scholarly journals Probability cueing of singleton-distractor locations in visual search: priority-map‐ or dimension-based inhibition?

2018 ◽  
Author(s):  
Bei Zhang ◽  
Fredrik Allenmark ◽  
Heinrich R. Liesefeld ◽  
Zhuanghua Shi ◽  
Hermann J. Müller

ABSTRACTObservers can learn the likely locations of salient distractors in visual search, reducing their potential to capture attention (Ferrante et al., 2018; Sauter et al., 2018a; Wang & Theeuwes, 2018a). While there is agreement that this involves positional suppression of the likely distractor location(s), it is contentious at which stage of search guidance the suppression operates: the supra-dimensional priority map or feature-contrast signals within the distractor dimension. On the latter account, advocated by Sauter et al., target processing should be unaffected by distractor suppression when the target is defined in a different (non-suppressed) dimension to the target. At odds with this, Wang and Theeuwes found strong suppression not only of the (color) distractor, but also of the (shape) target when it appeared at the likely distractor location. Adopting their paradigm, the present study ruled out that increased cross-trial inhibition of the single frequent (frequently inhibited) as compared to any of the rare (rarely inhibited) distractor locations is responsible for this target-location effect. However, a reduced likelihood of the target appearing at the frequent vs. a rare distractor location contributes to this effect: removing this negative bias abolished the cost to target processing with increasing practice, indicative of a transition from priority-map‐ to dimension-based – and thus a flexible locus of – distractor suppression.Public Significance StatementDistraction by a salient visual stimulus outside the ‘focus’ of the task at hand occurs frequently. The present study examined whether and how ‘knowledge’ of the likely location(s) where the distractors occur helps the observer to mitigate distraction. The results confirmed that observers can learn to suppress distracting stimuli at likely locations. Further, they showed that, the suppression may occur at different levels in the hierarchically organized visual system where the priorities of which objects to be attended in the environment are determined.

NeuroImage ◽  
2016 ◽  
Vol 124 ◽  
pp. 887-897 ◽  
Author(s):  
Stefan Pollmann ◽  
Jana Eštočinová ◽  
Susanne Sommer ◽  
Leonardo Chelazzi ◽  
Wolf Zinke

2021 ◽  
pp. 174702182110478
Author(s):  
Massimo Turatto ◽  
Matteo Valsecchi

Spatial suppression of a salient colour distractor is achievable via statistical learning. Distractor suppression attenuates unwanted capture, but at the same time target selection at the most likely distractor location is impaired. This result corroborates the idea that the distractor salience is attenuated via inhibitory signals applied to the corresponding location in the priority map. What is less clear, however, is whether lingering impairment in target selection when the distractor is removed are due to the proactive strategic maintenance of the suppressive signal at the previous most likely distractor location or result from the fact that suppression has induced plastic changes in the priority map, probably changing input weights. Here, we provide evidence that supports the latter possibility, as we found that impairment in target selection persisted even when the singleton distractor in the training phase became the target of search in a subsequent test phase. This manipulation rules out the possibility that the observed impairments at the previous most likely distractor location were caused by a signal suppression maintained at this location. Rather, the results reveal that the inhibitory signals cause long-lasting changes in the priority map, which affect future computation of the target salience at the same location, and therefore the efficiency of attentional selection.


2011 ◽  
Vol 23 (3) ◽  
pp. 645-660 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Anna Schubö

It is not clear how salient distractors affect visual processing. The debate concerning the issue of whether irrelevant salient items capture spatial attention [e.g., Theeuwes, J., Atchley, P., & Kramer, A. F. On the time course of top–down and bottom–up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention and performance XVIII: Control of cognitive performance (pp. 105–124). Cambridge, MA: MIT Press, 2000] or produce only nonspatial interference in the form of, for example, filtering costs [Folk, Ch. L., & Remington, R. Top–down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445–465, 2006] has not yet been settled. The present ERP study examined deployment of attention in visual search displays that contained an additional irrelevant singleton. Display-locked N2pc showed that attention was allocated to the target and not to the irrelevant singleton. However, the onset of the N2pc to the target was delayed when the irrelevant singleton was presented in the opposite hemifield relative to the same hemifield. Thus, although attention was successfully focused on the target, the irrelevant singleton produced some interference resulting in a delayed allocation of attention to the target. A subsequent probe discrimination task allowed for locking ERPs to probe onsets and investigating the dynamics of sensory gain control for probes appearing at relevant (target) or irrelevant (singleton distractor) positions. Probe-locked P1 showed sensory gain for probes positioned at the target location but no such effect for irrelevant singletons in the additional singleton condition. Taken together, the present data support the claim that irrelevant singletons do not capture attention. If they produce any interference, it is rather due to nonspatial filtering costs.


2019 ◽  
Vol 45 (9) ◽  
pp. 1146-1163 ◽  
Author(s):  
Bei Zhang ◽  
Fredrik Allenmark ◽  
Heinrich René Liesefeld ◽  
Zhuanghua Shi ◽  
Hermann J. Müller

2018 ◽  
Author(s):  
Michel Failing ◽  
Benchi Wang ◽  
Jan Theeuwes

Where and what we attend to is not only determined by what we are currently looking for but also by what we have encountered in the past. Recent studies suggest that biasing the probability by which distractors appear at locations in visual space may lead to attentional suppression of high probability distractor locations which effectively reduces capture by a distractor but also impairs target selection at this location. However, in many of these studies introducing a high probability distractor location was tantamount to increasing the probability of the target appearing in any of the other locations (i.e. the low probability distractor locations). Here, we investigate an alternative interpretation of previous findings according to which attentional selection at high probability distractor locations is not suppressed. Instead, selection at low probability distractor locations is facilitated. In two visual search tasks, we found no evidence for this hypothesis: neither when there was only a bias in target presentation but no bias in distractor presentation (Experiment 1), nor when there was only a bias in distractor presentation but no bias in target presentation (Experiment 2). We conclude that recurrent presentation of a distractor in a specific location leads to attentional suppression of that location through a mechanism that is unaffected by any regularities regarding the target location.


Author(s):  
Tobias Rieger ◽  
Lydia Heilmann ◽  
Dietrich Manzey

AbstractVisual inspection of luggage using X-ray technology at airports is a time-sensitive task that is often supported by automated systems to increase performance and reduce workload. The present study evaluated how time pressure and automation support influence visual search behavior and performance in a simulated luggage screening task. Moreover, we also investigated how target expectancy (i.e., targets appearing in a target-often location or not) influenced performance and visual search behavior. We used a paradigm where participants used the mouse to uncover a portion of the screen which allowed us to track how much of the stimulus participants uncovered prior to their decision. Participants were randomly assigned to either a high (5-s time per trial) or a low (10-s time per trial) time-pressure condition. In half of the trials, participants were supported by an automated diagnostic aid (85% reliability) in deciding whether a threat item was present. Moreover, within each half, in target-present trials, targets appeared in a predictable location (i.e., 70% of targets appeared in the same quadrant of the image) to investigate effects of target expectancy. The results revealed better detection performance with low time pressure and faster response times with high time pressure. There was an overall negative effect of automation support because the automation was only moderately reliable. Participants also uncovered a smaller amount of the stimulus under high time pressure in target-absent trials. Target expectancy of target location improved accuracy, speed, and the amount of uncovered space needed for the search.Significance Statement Luggage screening is a safety–critical real-world visual search task which often has to be done under time pressure. The present research found that time pressure compromises performance and increases the risk to miss critical items even with automation support. Moreover, even highly reliable automated support may not improve performance if it does not exceed the manual capabilities of the human screener. Lastly, the present research also showed that heuristic search strategies (e.g., areas where targets appear more often) seem to guide attention also in luggage screening.


2019 ◽  
Author(s):  
Dirk van Moorselaar ◽  
Heleen A. Slagter

AbstractIt is well known that attention can facilitate performance by top-down biasing processing of task-relevant information in advance. Recent findings from behavioral studies suggest that distractor inhibition is not under similar direct control, but strongly dependent on expectations derived from previous experience. Yet, how expectations about distracting information influence distractor inhibition at the neural level remains unclear. The current study addressed this outstanding question in three experiments in which search displays with repeating distractor or target locations across trials allowed observers to learn which location to selectively suppress or boost. Behavioral findings demonstrated that both distractor and target location learning resulted in more efficient search, as indexed by faster response times. Crucially, benefits of distractor learning were observed without target location foreknowledge, unaffected by the number of possible target locations, and could not be explained by priming alone. To determine how distractor location expectations facilitated performance, we applied a spatial encoding model to EEG data to reconstruct activity in neural populations tuned to the distractor or target location. Target location learning increased neural tuning to the target location in advance, indicative of preparatory biasing. This sensitivity increased after target presentation. By contrast, distractor expectations did not change preparatory spatial tuning. Instead, distractor expectations reduced distractor-specific processing, as reflected in the disappearance of the Pd ERP component, a neural marker of distractor inhibition, and decreased decoding accuracy. These findings suggest that the brain may no longer process expected distractors as distractors, once it has learned they can safely be ignored.Significance statementWe constantly try hard to ignore conspicuous events that distract us from our current goals. Surprisingly, and in contrast to dominant attention theories, ignoring distracting, but irrelevant events does not seem to be as flexible as is focusing our attention on those same aspects. Instead, distractor suppression appears to strongly rely on learned, context-dependent expectations. Here, we investigated how learning about upcoming distractors changes distractor processing and directly contrasted the underlying neural dynamics to target learning. We show that while target learning enhanced anticipatory sensory tuning, distractor learning only modulated reactive suppressive processing. These results suggest that expected distractors may no longer be considered distractors by the brain once it has learned that they can safely be ignored.


2021 ◽  
Vol 16 (7) ◽  
pp. 2943-2964
Author(s):  
Xudong Lin ◽  
Xiaoli Huang ◽  
Shuilin Liu ◽  
Yulin Li ◽  
Hanyang Luo ◽  
...  

With the rapid development of information technology, digital platforms can collect, utilize, and share large amounts of specific information of consumers. However, these behaviors may endanger information security, thus causing privacy concerns among consumers. Considering the information sharing among firms, this paper constructs a two-period duopoly price competition Hotelling model, and gives insight into the impact of three different levels of privacy regulations on industry profit, consumer surplus, and social welfare. The results show that strong privacy protection does not necessarily make consumers better off, and weak privacy protection does not necessarily hurt consumers. Information sharing among firms will lead to strong competitive effects, which will prompt firms to lower the price for new customers, thus damaging the profits of firms, and making consumers’ surplus higher. The level of social welfare under different privacy regulations depends on consumers’ product-privacy preference, and the cost of information coordination among firms. With the cost of information coordination among firms increasing, it is only in areas where consumers have greater privacy preferences that social welfare may be optimal under the weak regulation.


Sign in / Sign up

Export Citation Format

Share Document