scholarly journals Quantum machine learning for quantum anomaly detection

2018 ◽  
Vol 97 (4) ◽  
Author(s):  
Nana Liu ◽  
Patrick Rebentrost
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4805
Author(s):  
Saad Abbasi ◽  
Mahmoud Famouri ◽  
Mohammad Javad Shafiee ◽  
Alexander Wong

Human operators often diagnose industrial machinery via anomalous sounds. Given the new advances in the field of machine learning, automated acoustic anomaly detection can lead to reliable maintenance of machinery. However, deep learning-driven anomaly detection methods often require an extensive amount of computational resources prohibiting their deployment in factories. Here we explore a machine-driven design exploration strategy to create OutlierNets, a family of highly compact deep convolutional autoencoder network architectures featuring as few as 686 parameters, model sizes as small as 2.7 KB, and as low as 2.8 million FLOPs, with a detection accuracy matching or exceeding published architectures with as many as 4 million parameters. The architectures are deployed on an Intel Core i5 as well as a ARM Cortex A72 to assess performance on hardware that is likely to be used in industry. Experimental results on the model’s latency show that the OutlierNet architectures can achieve as much as 30x lower latency than published networks.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Haoran Liao ◽  
Ian Convy ◽  
William J. Huggins ◽  
K. Birgitta Whaley

Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 460
Author(s):  
Samuel Yen-Chi Chen ◽  
Shinjae Yoo

Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.


2021 ◽  
Author(s):  
José D. Martín-Guerrero ◽  
Lucas Lamata

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Lucas Lamata

Quantum machine learning has emerged as a promising paradigm that could accelerate machine learning calculations. Inside this field, quantum reinforcement learning aims at designing and building quantum agents that may exchange information with their environment and adapt to it, with the aim of achieving some goal. Different quantum platforms have been considered for quantum machine learning and specifically for quantum reinforcement learning. Here, we review the field of quantum reinforcement learning and its implementation with quantum photonics. This quantum technology may enhance quantum computation and communication, as well as machine learning, via the fruitful marriage between these previously unrelated fields.


Sign in / Sign up

Export Citation Format

Share Document