scholarly journals Correlation between vibrational anomalies and emergent anharmonicity of the local potential energy landscape in metallic glasses

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Zeng-Yu Yang ◽  
Yun-Jiang Wang ◽  
Alessio Zaccone
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Rodrigo Miguel Ojeda Mota ◽  
Ethen Thomas Lund ◽  
Sungwoo Sohn ◽  
David John Browne ◽  
Douglas Clayton Hofmann ◽  
...  

AbstractMost of the known bulk metallic glasses lack sufficient ductility or toughness when fabricated under conditions resulting in bulk glass formation. To address this major shortcoming, processing techniques to improve ductility that mechanically affect the glass have been developed, however it remains unclear for which metallic glass formers they work and by how much. Instead of manipulating the glass state, we show here that an applied strain rate can excite the liquid, and simultaneous cooling results in freezing of the excited liquid into a glass with a higher fictive temperature. Microscopically, straining causes the structure to dilate, hence “pulls” the structure energetically up the potential energy landscape. Upon further cooling, the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. We use Zr44Ti11Cu10Ni10Be25 as an example alloy to pull bulk metallic glasses through this excited liquid cooling method, which can lead to tripling of the bending ductility.


2020 ◽  
Vol 117 (26) ◽  
pp. 14987-14995 ◽  
Author(s):  
Ratan Othayoth ◽  
George Thoms ◽  
Chen Li

Effective locomotion in nature happens by transitioning across multiple modes (e.g., walk, run, climb). Despite this, far more mechanistic understanding of terrestrial locomotion has been on how to generate and stabilize around near–steady-state movement in a single mode. We still know little about how locomotor transitions emerge from physical interaction with complex terrain. Consequently, robots largely rely on geometric maps to avoid obstacles, not traverse them. Recent studies revealed that locomotor transitions in complex three-dimensional (3D) terrain occur probabilistically via multiple pathways. Here, we show that an energy landscape approach elucidates the underlying physical principles. We discovered that locomotor transitions of animals and robots self-propelled through complex 3D terrain correspond to barrier-crossing transitions on a potential energy landscape. Locomotor modes are attracted to landscape basins separated by potential energy barriers. Kinetic energy fluctuation from oscillatory self-propulsion helps the system stochastically escape from one basin and reach another to make transitions. Escape is more likely toward lower barrier direction. These principles are surprisingly similar to those of near-equilibrium, microscopic systems. Analogous to free-energy landscapes for multipathway protein folding transitions, our energy landscape approach from first principles is the beginning of a statistical physics theory of multipathway locomotor transitions in complex terrain. This will not only help understand how the organization of animal behavior emerges from multiscale interactions between their neural and mechanical systems and the physical environment, but also guide robot design, control, and planning over the large, intractable locomotor-terrain parameter space to generate robust locomotor transitions through the real world.


Sign in / Sign up

Export Citation Format

Share Document