Structural and electronic properties of narrow-band-gap semiconductors: InP, InAs, and InSb

1990 ◽  
Vol 41 (17) ◽  
pp. 12079-12085 ◽  
Author(s):  
S. Massidda ◽  
A. Continenza ◽  
A. J. Freeman ◽  
T. M. de Pascale ◽  
F. Meloni ◽  
...  
2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2007 ◽  
Vol 996 ◽  
Author(s):  
Peter Broqvist ◽  
Alfredo Pasquarello

AbstractWe study structural and electronic properties of the oxygen vacancy in monoclinic HfO2 for five different charge states. We use a hybrid density functional to accurately reproduce the experimental band gap. To compare with measured defect levels, we determine total-energy differences appropriate to the considered experiments. Our results show that the oxygen vacancy can consistently account for the defect levels observed in optical absorption, direct electron injection, and trap-assisted conduction experiments.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
E. Klontzas ◽  
E. Tylianakis ◽  
V. Varshney ◽  
A. K. Roy ◽  
G. E. Froudakis

Abstract The structural and electronic properties of molecularly pillared graphene sheets were explored by performing Density Functional based Tight Binding calculations. Several different architectures were generated by varying the density of the pillars, the chemical composition of the organic molecule acting as a pillar and the pillar distribution. Our results show that by changing the pillars density and distribution we can tune the band gap transforming graphene from metallic to semiconducting in a continuous way. In addition, the chemical composition of the pillars affects the band gap in a lesser extent by introducing additional states in the valence or the conduction band and can act as a fine band gap tuning. These unique electronic properties controlled by design, makes Mollecular Pillared Graphene an excellent material for flexible electronics.


2014 ◽  
Vol 53 (18) ◽  
pp. 9959-9968 ◽  
Author(s):  
Daniel E. Bugaris ◽  
Christos D. Malliakas ◽  
Daniel P. Shoemaker ◽  
Dat T. Do ◽  
Duck Young Chung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document