scholarly journals Nuclear shape transition at finite temperature in a relativistic mean field approach

2000 ◽  
Vol 62 (4) ◽  
Author(s):  
B. K. Agrawal ◽  
Tapas Sil ◽  
J. N. De ◽  
S. K. Samaddar
2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2018 ◽  
Vol 98 (2) ◽  
Author(s):  
Z.-X. Liu ◽  
C.-J. Xia ◽  
W.-L. Lu ◽  
Y.-X. Li ◽  
J. N. Hu ◽  
...  

2004 ◽  
Vol 13 (07) ◽  
pp. 1249-1253
Author(s):  
DÉBORA P. MENEZES ◽  
C. PROVIDÊNCIA

We investigate the properties of mixed stars formed by hadronic and quark matter in β-equilibrium described by appropriate equations of state (EOS) in the framework of relativistic mean-field theory. The calculations were performed for T=0 and for finite temperatures and also for fixed entropies with and without neutrino trapping in order to describe neutron and proto-neutron stars. The star properties are discussed. Maximum allowed masses for proto-neutron stars are much larger when neutrino trapping is imposed.


2012 ◽  
Vol 21 (08) ◽  
pp. 1250074 ◽  
Author(s):  
CHIRASHREE LAHIRI ◽  
G. GANGOPADHYAY

Densities from relativistic mean field calculations are applied to construct the optical potential and, hence calculate the endpoint of the rapid proton capture (rp) process. Mass values are taken from a new phenomenological mass formula. Endpoints are calculated for different temperature-density profiles of various X-ray bursters. We find that the rp process can produce significant quantities of nuclei upto around mass 95. Our results differ from existing works to some extent.


1998 ◽  
Vol 57 (2) ◽  
pp. 857-865 ◽  
Author(s):  
A. Delfino ◽  
Lizardo H. C. M. Nunes ◽  
J. S. Sá Martins

1999 ◽  
Vol 651 (2) ◽  
pp. 117-139 ◽  
Author(s):  
S.K. Patra ◽  
Cheng-Li Wu ◽  
C.R. Praharaj ◽  
Raj K. Gupta

Sign in / Sign up

Export Citation Format

Share Document