scholarly journals SPIIR online coherent pipeline to search for gravitational waves from compact binary coalescences

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Qi Chu ◽  
Manoj Kovalam ◽  
Linqing Wen ◽  
Teresa Slaven-Blair ◽  
Joel Bosveld ◽  
...  
2018 ◽  
Vol 168 ◽  
pp. 01008 ◽  
Author(s):  
Rong-Gen Cai ◽  
Tao Yang

The gravitational waves from compact binary systems are viewed as a standard siren to probe the evolution of the universe. This paper summarizes the potential and ability to use the gravitational waves to constrain the cosmological parameters and the dark sector interaction in the Gaussian process methodology. After briefly introducing the method to reconstruct the dark sector interaction by the Gaussian process, the concept of standard sirens and the analysis of reconstructing the dark sector interaction with LISA are outlined. Furthermore, we estimate the constraint ability of the gravitational waves on cosmological parameters with ET. The numerical methods we use are Gaussian process and the Markov-Chain Monte-Carlo. Finally, we also forecast the improvements of the abilities to constrain the cosmological parameters with ET and LISA combined with the Planck.


2017 ◽  
Vol 4 (5) ◽  
pp. 687-706 ◽  
Author(s):  
Rong-Gen Cai ◽  
Zhoujian Cao ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang ◽  
Tao Yang

Abstract The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined with other cosmological probes. The gravitational-wave physics is not only related to gravitation theory, but also is closely tied to fundamental physics, cosmology and astrophysics. In this review article, three kinds of sources of gravitational waves and relevant physics will be discussed, namely gravitational waves produced during the inflation and preheating phases of the Universe, the gravitational waves produced during the first-order phase transition as the Universe cools down and the gravitational waves from the three phases: inspiral, merger and ringdown of a compact binary system, respectively. We will also discuss the gravitational waves as a standard siren to explore the evolution of the Universe.


2017 ◽  
Vol 96 (10) ◽  
Author(s):  
Sanjeev Dhurandhar ◽  
Anuradha Gupta ◽  
Bhooshan Gadre ◽  
Sukanta Bose

2012 ◽  
Vol 85 (8) ◽  
Author(s):  
J. Abadie ◽  
B. P. Abbott ◽  
R. Abbott ◽  
T. D. Abbott ◽  
M. Abernathy ◽  
...  

2016 ◽  
Vol 831 (2) ◽  
pp. 190 ◽  
Author(s):  
K. Hotokezaka ◽  
S. Nissanke ◽  
G. Hallinan ◽  
T. J. W. Lazio ◽  
E. Nakar ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2384
Author(s):  
Riccardo Sturani

While being as old as general relativity itself, the gravitational two-body problem has never been under so intense investigation as it is today, spurred by both phenomenological and theoretical motivations. The observations of gravitational waves emitted by compact binary coalescences bear the imprint of the source dynamics, and as the sensitivity of detectors improve over years, more accurate modeling is being required. The analytic modeling of classical gravitational dynamics has been enriched in this century by powerful methods borrowed from field theory. Despite being originally developed in the context of fundamental particle quantum scatterings, their applications to classical, bound system problems have shown that many features usually associated with quantum field theory, such as, e.g., divergences and counterterms, renormalization group, loop expansion, and Feynman diagrams, have only to do with field theory, be it quantum or classical. The aim of this work is to present an overview of this approach, which models massive astrophysical objects as nonrelativistic particles and their gravitational interactions via classical field theory, being well aware that while the introductory material in the present article is meant to represent a solid background for newcomers in the field, the results reviewed here will soon become obsolete, as this field is undergoing rapid development.


Sign in / Sign up

Export Citation Format

Share Document