scholarly journals Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. I. Formalism

2018 ◽  
Vol 97 (10) ◽  
Author(s):  
Christopher M. Hirata ◽  
Abhilash Mishra ◽  
Tejaswi Venumadhav
2018 ◽  
Vol 6 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Hong Li ◽  
Si-Yu Li ◽  
Yang Liu ◽  
Yong-Ping Li ◽  
Yifu Cai ◽  
...  

Abstract In this paper, we will give a general introduction to the Ali CMB Polarization Telescope (AliCPT) project, which is a Sino–US joint project led by the Institute of High Energy Physics and involves many different institutes in China. It is the first ground-based Cosmic Microwave Background (CMB) polarization experiment in China and an integral part of China's Gravitational-wave Program. The main scientific goal of the AliCPT project is to probe the primordial gravitational waves (PGWs) originating from the very early Universe. The AliCPT project includes two stages. The first stage, referred to as AliCPT-1, is to build a telescope in the Ali region of Tibet at an altitude of 5250 meters. Once completed, it will be the highest ground-based CMB observatory in the world and will open a new window for probing PGWs in the northern hemisphere. The AliCPT-1 telescope is designed to have about 7000 transition-edge sensor detectors at 95 GHz and 150 GHz. The second stage is to have a more sensitive telescope (AliCPT-2) with more than 20 000 detectors. Our simulations show that AliCPT will improve the current constraint on the tensor-to-scalar ratio r by one order of magnitude with three years' observation. Besides the PGWs, AliCPT will also enable a precise measurement of the CMB rotation angle and provide a precise test of the CPT symmetry. We show that three years' observation will improve the current limit by two orders of magnitude.


2016 ◽  
Vol 760 ◽  
pp. 823-825 ◽  
Author(s):  
Luca Pagano ◽  
Laura Salvati ◽  
Alessandro Melchiorri

Sign in / Sign up

Export Citation Format

Share Document