scholarly journals Improved accuracy fullerene polarizability measurements in a long-baseline matter-wave interferometer

2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Yaakov Y. Fein ◽  
Philipp Geyer ◽  
Filip Kiałka ◽  
Stefan Gerlich ◽  
Markus Arndt
2020 ◽  
Vol 22 (25) ◽  
pp. 14036-14041
Author(s):  
Yaakov Y. Fein ◽  
Armin Shayeghi ◽  
Filip Kiałka ◽  
Philipp Geyer ◽  
Stefan Gerlich ◽  
...  
Keyword(s):  

We measure the diamagnetic deflection of anthracene and adamantane in a long-baseline matter-wave interferometer.


2018 ◽  
Vol 620 ◽  
pp. A160 ◽  
Author(s):  
N. Liu ◽  
S. B. Lambert ◽  
Z. Zhu

Aims. We propose to estimate the accuracy of current very long baseline interferometry (VLBI) catalogs. Methods. The difference of source position estimated from two decimation solutions was analyzed to estimate the scale factor and noise floor for the formal error of radio source positions by two different methods. In one method, we investigated the weighted root-square-mean (wrms) scatter of source positional differences versus the number of observed sessions; for the other one, we compared the wrms difference versus the formal error. Based on the estimated noise floor and scale factor, we determined the realistic error of radio source positions in the standard solution and compared it with that of Gaia DR2 and ICRF2 catalogs. Results. The estimated scale factors from two methods are rather consistent, which is of ∼1.3 in both coordinates. As for the noise floor, it is estimated to be 20–25 μas for sources observed in at least ten sessions, and it could reduce down to ∼10 μas for sources which have been observed more than 1000 times. The inflated median formal error of our solution is of the same order as the Gaia DR2 catalog in declination and the direction of major axis of the error ellipse, but smaller by a factor of two in right ascension. With respect to the ICRF2 catalog, our solution yields an improved accuracy by a factor of about three. Conclusions. Currently, the VLBI radio source catalog still provides source positions with the best accuracy which is about 20–25 μas. Moreover, the noise floor of VLBI catalogs could potentially reach 10 μas with more observations in the future.


2019 ◽  
Vol 94 (3) ◽  
pp. 034001 ◽  
Author(s):  
Filip Kiałka ◽  
Benjamin A Stickler ◽  
Klaus Hornberger ◽  
Yaakov Y Fein ◽  
Philipp Geyer ◽  
...  
Keyword(s):  

2018 ◽  
pp. 51-54
Author(s):  
I. E. Arsaev ◽  
Yu. V. Vekshin ◽  
A. I. Lapshin ◽  
V. V. Mardyshkin ◽  
M. V. Sargsyan ◽  
...  

2015 ◽  
Author(s):  
Mohamed Ahmed ◽  
Michael Jeffers ◽  
John Feeney ◽  
Pardeep Govender ◽  
Mark Sherlock ◽  
...  

2006 ◽  
Vol 2 (1) ◽  
pp. 73-94 ◽  
Author(s):  
Péter Mészáros ◽  
David B. Funk

The Unified Grain Moisture Algorithm is capable of improved accuracy and allows the combination of many grain types into a single “unified calibration”. The purposes of this research were to establish processes for determining unifying parameters from the chemical and physical properties of grains. The data used in this research were obtained as part of the United States Department of Agriculture-Grain Inspection, Packers and Stockyards Administration's Annual Moisture Calibration Study. More than 5,000 grain samples were tested with a Hewlett-Packard 4291A Material/Impedance Analyzer. Temperature tests were done with a Very High Frequency prototype system at Corvinus University of Budapest. Typical chemical and physical parameters for each of the major grain types were obtained from the literature. Data were analyzed by multivariate chemometric methods. One of the most important unifying parameters (Slope) and the temperature correction coefficient were successfully modeled. The Offset and Translation unifying parameters were not modeled successfully, but these parameters can be estimated relatively easily through limited grain tests.


1989 ◽  
Vol 17 (2) ◽  
pp. 86-99 ◽  
Author(s):  
I. Gardner ◽  
M. Theves

Abstract During a cornering maneuver by a vehicle, high forces are exerted on the tire's footprint and in the contact zone between the tire and the rim. To optimize the design of these components, a method is presented whereby the forces at the tire-rim interface and between the tire and roadway may be predicted using finite element analysis. The cornering tire is modeled quasi-statically using a nonlinear geometric approach, with a lateral force and a slip angle applied to the spindle of the wheel to simulate the cornering loads. These values were obtained experimentally from a force and moment machine. This procedure avoids the need for a costly dynamic analysis. Good agreement was obtained with experimental results for self-aligning torque, giving confidence in the results obtained in the tire footprint and at the rim. The model allows prediction of the geometry and of the pressure distributions in the footprint, since friction and slip effects in this area were considered. The model lends itself to further refinement for improved accuracy and additional applications.


Sign in / Sign up

Export Citation Format

Share Document