scholarly journals Fault-Tolerant Qubit from a Constant Number of Components

PRX Quantum ◽  
2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Kianna Wan ◽  
Soonwon Choi ◽  
Isaac H. Kim ◽  
Noah Shutty ◽  
Patrick Hayden
2015 ◽  
Vol 07 (02) ◽  
pp. 1550009 ◽  
Author(s):  
Gianluca De Marco ◽  
Evangelos Kranakis

Diagnosing the quality of components in fault-tolerant computer systems often requires numerous tests with limited resources. It is usually the case that repeated tests on a selected, limited number of components are performed and the results are taken into account so as to infer a diagnostic property of the computer system as a whole. In this paper we abstract fault-tolerant testing as the following problem concerning the color of the majority in a set of colored balls. Given a set of balls each colored with one of two colors, the majority problem is to determine whether or not there is a majority in one of the two colors. In case there is such a majority, the aim is to output a ball of the majority color, otherwise to declare that there is no majority. We propose algorithms for solving the majority problem by repeatedly testing only k-tuple queries. Namely, successive answers of an oracle (which accepts as input only k-tuples) to a sequence of k-tuple queries are assembled so as to determine whether or not the majority problem has a solution. An issue is to design an algorithm which minimizes the number of k-tuple queries needed in order to solve the majority problem on any possible input of n balls. In this paper we consider three querying models: Output, Counting, and General, reflecting the amount and type of information provided by the oracle on each test for a k-tuple.


2002 ◽  
Vol 12 (06) ◽  
pp. 445-453 ◽  
Author(s):  
PROSENJIT BOSE ◽  
LUC DEVROYE ◽  
WILLIAM EVANS

Two recent methods have increased hopes of finding a polynomial time solution to the problem of computing the minimum weight triangulation of a set S of n points in the plane. Both involve computing what was believed to be a connected or nearly connected subgraph of the minimum weight triangulation, and then completing the triangulation optimally. The first method uses the light graph of S as its initial subgraph. The second method uses the LMT-skeleton of S. Both methods rely, for their polynomial time bound, on the initial subgraphs having only a constant number of components. Experiments performed by the authors of these methods seemed to confirm that randomly chosen point sets displayed this desired property. We show that there exist point sets where the number of components is linear in n. In fact, the expected number of components in either graph on a randomly chosen point set is linear in n, and the probability of the number of components exceeding some constant times n tends to one.


Sign in / Sign up

Export Citation Format

Share Document