scholarly journals Changes of Mitochondrial Properties in Maize Seedlings Associated with Selection for Germination at Low Temperature. Fatty Acid Composition, Cytochrome c Oxidase, and Adenine Nucleotide Translocase Activities

1999 ◽  
Vol 119 (2) ◽  
pp. 743-754 ◽  
Author(s):  
Aurelio De Santis ◽  
Pierangelo Landi ◽  
Giuseppe Genchi
1978 ◽  
Vol 56 (9) ◽  
pp. 905-915 ◽  
Author(s):  
A. S. Denes ◽  
N. Z. Stanacev

Lipid-depleted cytochrome c oxidase (EC 1.9.3.1) containing < 20 μg lipids per milligram protein was reconstituted with pure phospholipids of well-defined chemical structure and fatty acid composition without using detergents and (or) sonication. For the maximal restoration of electron transport activity, lipid-depleted cytochrome c oxidase required acidic phospholipids such as phosphatidylglycerol or phosphatidylserine or lysophospholipids such as lysophosphatidylcholine or lysophosphatidic acid, but no specific phospholipid fatty acid composition was necessary. The organization of the lipid environment of the reconstituted cytochrome c oxidase, having a well-defined lipid composition, morphology, and a high specific activity, was examined by electron spin resonance spectroscopy using 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxyl (16-doxyl stearic acid) and 16-doxyl stearic acid - containing phosphatidylglycerol. The presence of boundary lipid was established in both lamellar and micellar organizations of reconstituted cytochrome c oxidase and was not necessarily related to the enzymatic activity of the complex. Our results have established that aside from structural considerations, the boundary lipid, at least in the reconstituted cytochrome c oxidase, is a necessary but not sufficient condition for the enzymatic expression of cytochrome c oxidase.


2013 ◽  
Vol 53 (2) ◽  
pp. 129 ◽  
Author(s):  
M. J. Kelly ◽  
R. K. Tume ◽  
S. Newman ◽  
J. M. Thompson

Genetic parameters were estimated for fatty acid composition of subcutaneous beef fat of 1573 animals which were the progeny of 157 sires across seven breeds grown out on pasture and then finished on either grain or grass in northern New South Wales or in central Queensland. There was genetic variation in individual fatty acids with estimates of heritability for the proportions of C14 : 0, C14 : 1c9, C16 : 0, C16 : 1c9, C18 : 0 and C18 : 1c9 fatty acids in subcutaneous beef fat of the order of 0.4 or above. Also substantial correlations between some fatty acids were observed. Genetic correlations between fatty acids and fat depth at the P8 site suggested that much of the genetic variation in fatty acid composition was related to changes in fatness. Selection for decreased fatness resulted in decreased proportions of C18 : 1c9 with concomitant increases in C18 : 0, C14 : 0 and C16 : 0. This suggested that selection for decreased fatness at a given weight will result in a decrease in the proportions of monounsaturated fatty acids in the subcutaneous fat in the carcass with a corresponding increase in the proportions of saturated fatty acids.


Crop Science ◽  
1981 ◽  
Vol 21 (5) ◽  
pp. 788-791 ◽  
Author(s):  
Richard F. Wilson ◽  
J. W. Burton ◽  
C. A. Brim

2019 ◽  
Vol 11 (10) ◽  
pp. 1430-1437
Author(s):  
Li Chen ◽  
Shengping Yang ◽  
Yunfang Qian ◽  
Jing Xie

Shewanella putrefaciensis a kind of spoilage bacteria in low temperature chilled aquatic products, which seriously threats human health and aquaculture. The fatty acid composition of S. putrefaciens cell membranes has been shown to be involved in adaption of bacteria to various environments. However, the specific fatty acid metabolism of S. putrefaciens to the low temperature environment remains unknown. In this study, the growth of S. putrefaciens, the response of fatty acid composition to low temperature production, and the differential expression and synthesis of enzymes related to unsaturated fatty acid synthesis were investigated by lack of fabA and desA in S. putrefaciens. Results showed that loss of fabA and desA suppressed the growth of S. putrefaciens and reduced unsaturated fatty acid contents at low temperature. In addition, the upregulation of fabA, but not desA resulted in accumulation of unsaturated fatty acid. Up-regulations of fabA and desA both resulted in promotion of GPR41 and Retn gene and protein expressions. These results demonstrated that the deletions of fabA and desA resulted in reduction of unsaturated fatty acid and key downstream genes of fatty acid metabolism, which suggested that unsaturated fatty acid was involved in the adaptations of fabA and desA-mediated S. putrefaciens to the low temperature environment. These results provided a tentative mechanism of the synthesis of unsaturated fatty acids in S. putrefaciens under low temperature conditions.


2007 ◽  
Vol 19 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Yaşar Durmaz ◽  
Margarida Monteiro ◽  
Narcisa Bandarra ◽  
Şevket Gökpinar ◽  
Oya Işik

Sign in / Sign up

Export Citation Format

Share Document