scholarly journals X-ray absorption spectroscopy and actinide electrochemistry: a setup dedicated to radioactive samples applied to neptunium chemistry

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Richard Husar ◽  
Thomas Dumas ◽  
Michel L. Schlegel ◽  
Daniel Schlegel ◽  
Dominique Guillaumont ◽  
...  

A spectroelectrochemical setup has been developed to investigate radioactive elements in small volumes (0.7 to 2 ml) under oxidation–reduction (redox) controlled conditions by X-ray absorption spectroscopy (XAS). The cell design is presented together with in situ XAS measurements performed during neptunium redox reactions. Cycling experiments on the NpO2 2+/NpO2 + redox couple were applied to qualify the cell electrodynamics using XANES measurements and its ability to probe modifications in the neptunyl hydration shell in a 1 mol l−1 HNO3 solution. The XAS results are in agreement with previous structural studies and the NpO2 2+/NpO2 + standard potential, determined using Nernst methods, is consistent with measurements based on other techniques. Subsequently, the NpO2 +, NpO2 2+ and Np4+ ion structures in solution were stabilized and measured using EXAFS. The resulting fit parameters are again compared with other results from the literature and with theoretical models in order to evaluate how this spectroelectrochemistry experiment succeeds or fails to stabilize the oxidation states of actinides. The experiment succeeded in: (i) implementing a robust and safe XAS device to investigate unstable radioactive species, (ii) evaluate in a reproducible manner the NpO2 2+/NpO2 + standard potential under dilute conditions and (iii) clarify mechanistic aspects of the actinyl hydration sphere in solution. In contrast, a detailed comparison of EXAFS fit parameters shows that this method is less appropriate than the majority of the previously reported chemical methods for the stabilization of the Np4+ ion.

2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


2019 ◽  
Vol 48 (21) ◽  
pp. 7122-7129 ◽  
Author(s):  
Chia-Jui Chang ◽  
You-Chiuan Chu ◽  
Hao-Yu Yan ◽  
Yen-Fa Liao ◽  
Hao Ming Chen

The state-of-art RuO2 catalyst for the oxygen evolution reaction (OER) is measured by using in situ X-ray absorption spectroscopy (XAS) to elucidate the structural transformation during catalyzing the reaction in acidic and alkaline conditions.


2006 ◽  
Vol 77 (2) ◽  
pp. 023105 ◽  
Author(s):  
Simon R. Bare ◽  
George E. Mickelson ◽  
Frank S. Modica ◽  
Andrzej Z. Ringwelski ◽  
N. Yang

2007 ◽  
Author(s):  
Didier Grandjean ◽  
Fernando Morales ◽  
Ad Mens ◽  
Frank M. F. de Groot ◽  
Bert M. Weckhuysen

2004 ◽  
Vol 108 (24) ◽  
pp. 8148-8152 ◽  
Author(s):  
Yin W. Tsai ◽  
Yu L. Tseng ◽  
Loka S. Sarma ◽  
Din G. Liu ◽  
Jyh F. Lee ◽  
...  

1996 ◽  
pp. 1431 ◽  
Author(s):  
John Evans ◽  
Judith M. Corker ◽  
Clive E. Hayter ◽  
Richard J. Oldman ◽  
B. Peter Williams

2006 ◽  
pp. 4410 ◽  
Author(s):  
Andrew M. Beale ◽  
Ad M. J. van der Eerden ◽  
Didier Grandjean ◽  
Andrei V. Petukhov ◽  
Andy D. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document