scholarly journals Real-time X-ray imaging of mouse cerebral microvessels in vivo using a pixel temporal averaging method

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Fucheng Yu ◽  
Feixiang Wang ◽  
Ke Li ◽  
Guohao Du ◽  
Biao Deng ◽  
...  

Rodents are used extensively as animal models for the preclinical investigation of microvascular-related diseases. However, motion artifacts in currently available imaging methods preclude real-time observation of microvessels in vivo. In this paper, a pixel temporal averaging (PTA) method that enables real-time imaging of microvessels in the mouse brain in vivo is described. Experiments using live mice demonstrated that PTA efficiently eliminated motion artifacts and random noise, resulting in significant improvements in contrast-to-noise ratio. The time needed for image reconstruction using PTA with a normal computer was 250 ms, highlighting the capability of the PTA method for real-time angiography. In addition, experiments with less than one-quarter of photon flux in conventional angiography verified that motion artifacts and random noise were suppressed and microvessels were successfully identified using PTA, whereas conventional temporal subtraction and averaging methods were ineffective. Experiments performed with an X-ray tube verified that the PTA method could also be successfully applied to microvessel imaging of the mouse brain using a laboratory X-ray source. In conclusion, the proposed PTA method may facilitate the real-time investigation of cerebral microvascular-related diseases using small animal models.

2014 ◽  
Vol 21 (4) ◽  
pp. 815-818 ◽  
Author(s):  
A. Rack ◽  
M. Scheel ◽  
L. Hardy ◽  
C. Curfs ◽  
A. Bonnin ◽  
...  

First real-time studies of ultra-fast processes by single-bunch imaging at the European Synchrotron Radiation Facility are reported. By operating the storage ring of the ESRF in single-bunch mode with its correspondingly increased electron bunch charge density per singlet, the polychromatic photon flux density at insertion-device beamlines is sufficient to capture hard X-ray images exploiting the light from a single bunch (the corresponding bunch length is 140 ps FWHM). Hard X-ray imaging with absorption contrast as well as phase contrast in combination with large propagation distances is demonstrated using spatial samplings of 11 µm and 35 µm pixel size. The images acquired allow one to track crack propagation in a bursting piece of glass, breaking of an electrical fuse as well as cell wall rupture in an aqueous foam. Future developments and their potential in the frame of the proposed Phase II of the ESRF Upgrade Program are discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rhiannon P. Murrie ◽  
Freda Werdiger ◽  
Martin Donnelley ◽  
Yu-wei Lin ◽  
Richard P. Carnibella ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuki Mori ◽  
Ting Chen ◽  
Tetsuya Fujisawa ◽  
Syoji Kobashi ◽  
Kohji Ohno ◽  
...  

2007 ◽  
Author(s):  
Jiri Dammer ◽  
Tomas Holy ◽  
Jan Jakubek ◽  
Martin Jakubek ◽  
Stanislav Pospisil ◽  
...  
Keyword(s):  

2016 ◽  
Vol 23 (5) ◽  
pp. 1254-1263 ◽  
Author(s):  
Matthias Vogelgesang ◽  
Tomas Farago ◽  
Thilo F. Morgeneyer ◽  
Lukas Helfen ◽  
Tomy dos Santos Rolo ◽  
...  

Real-time processing of X-ray image data acquired at synchrotron radiation facilities allows for smart high-speed experiments. This includes workflows covering parameterized and image-based feedback-driven control up to the final storage of raw and processed data. Nevertheless, there is presently no system that supports an efficient construction of such experiment workflows in a scalable way. Thus, here an architecture based on a high-level control system that manages low-level data acquisition, data processing and device changes is described. This system is suitable for routine as well as prototypical experiments, and provides specialized building blocks to conduct four-dimensionalin situ,in vivoandoperandotomography and laminography.


2010 ◽  
Vol 638-642 ◽  
pp. 2423-2428 ◽  
Author(s):  
Vladimir Kostov ◽  
Jens Gibmeier ◽  
Stephen Doyle ◽  
Alexander Wanner

An innovative experimental set-up for fast X-ray diffraction analysis on polycrystalline materials has been established at the synchrotron radiation facility ANKA (Karlsruhe, Germany). Key components of the set-up are two fast microstrip line detectors arranged symmetrically around the incident beam in the backscatter region. The capabilities of the set-up are tested by means of in-situ heat treatment experiments on SAE 4140 steel samples. In this feasibility study the heat was introduced by means of either a heating stage or by means of a gas tungsten arc welding torch. It will be shown that the evolution of thermal and elastic lattice strains can be monitored at a sampling rate of up to 4 Hz at a bending-magnet synchrotron beamline. Since the sampling rate may be increased further at a insertion device synchrotron beamline providing higher photon flux, our setup appears to be feasible for monitoring laser treatments in real time.


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29672-29678 ◽  
Author(s):  
Zelun Li ◽  
Kelong Ai ◽  
Zhe Yang ◽  
Tianqi Zhang ◽  
Jianhua Liu ◽  
...  

Theranostic nanomedicine has shown tremendous promise for more effective and predictive cancer treatment by real-time mornitoring of the delivery of therapeutics to tumors and subsequent therapeutic response.


2007 ◽  
Vol 47 (11) ◽  
pp. 1304 ◽  
Author(s):  
D. L. Hopkins ◽  
D. F. Stanley ◽  
E. N. Ponnampalam

Fat depth over the M. longissimus thoracis et lumborum (LL) at the 12th rib (USFat C) and the depth of the LL (USEMD) were measured before slaughter using a real-time ultrasound machine in 147 mixed sex, 22-month-old sheep of five genotypes. Equivalent measures were obtained on the carcasses (Fat C and EMD) and each carcass side was scanned by dual energy X-ray absorptiometry to provide an estimate of composition (percentage lean and fat). There was a significant (P < 0.001) correlation between USFat C and Fat C (fat depth over the LL at the 12th rib measured on the carcass) at r = 0.67. This was also the case for USEMD and EMD (muscle depth of the LL at the 12th rib measured on the carcass) with a significant (P < 0.001) correlation of r = 0.55. Liveweight per se was a poor predictor of Fat C and was of minimal value when used in combination with ultrasonic fat depth measurements. The prediction of Fat C was significantly underestimated by USFat C and this increased as the animals became fatter. The relationship between carcass and ultrasonic measurements of EMD was poor, but better when liveweight was used in combination with USEMD. The prediction of EMD was significantly overestimated by USEMD and this increased as the animals became heavier. Combining USFat C measurement with liveweight significantly (P < 0.001) improved the accuracy (R2) and precision (r.s.d.) with which either the percentage of fat or lean could be estimated. Measurement of USEMD was of no value for the estimation of the percentage of fat or lean. There was no significant (P > 0.05) sex effect on any of the relationships. Ultrasonic measurement of subcutaneous fat depth and muscle depth in heavy fat animals is subject to undefined error, but still provides a means to predict in vivo fat levels and muscle depth. However, the bias associated with the predictions suggest caution should be exercised when measuring heavy fat sheep and the need for further work to confirm the findings of the present study.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dong Deng ◽  
Yao Qu ◽  
Lihua Sun ◽  
Liyang Jia ◽  
Jianhong Bu ◽  
...  

Fuyuan Xingnao decoction (FYXN), a traditional Chinese formula comprised of seven herbs, has been utilized to treat diabetes mellitus complicated with cerebral infarction (DMCI) for years. Yet, its protective and regulatory mechanism is poorly understood. The aim of the study is to investigate the effects of FYXN on DMCI in vitro and in vivo, as well as its mechanism in angiogenesis. For in vivo experiments, FYXN was administered to DMCI rats with streptozotocin (STZ) injection-induced diabetes. Then middle cerebral artery occlusion (MCAO) was conducted and the cerebral cortex sections of the rats were obtained. The ultrastructure of cerebral microvessels and new vessel density of ischemic penumbra were evaluated by the transmission electron microscopy (TEM) assay and immunohistochemistry, respectively. Protein and mRNA expression levels of Rab1/AT1R in cortex were assayed by Western blotting and real-time fluorescence quantitative real-time polymerase chain reaction (RT-qPCR). In vitro, FYXN serum was produced in rats on the fourth day 2 h after the last FYXN administration. Green fluorescence was observed after transfection with lentivirus packaged Rab1-WT or siRNA for 24 h. The activity of brain microvascular endothelial cells (BMECs) treated with sera from these rats was tested by MTT assay and Transwell assays, respectively. The expression of AT1R on the cell membrane and endoplasmic reticulum of BMECs was evaluated by immunofluorescence staining. Protein expression levels of signaling molecules in the Rab1/AT1R pathways were also detected. Results showed that in vivo, FYXN treatment significantly intensified CD31 staining in the cortical areas and enhanced the mRNA and protein levels of AT1R, Ang II, Rab1a, Rab1b and VEGF expression in ischemic cerebral cortex tissues. In vitro, the expression levels of AT1R, Ang II, Rab1a, Rab1b and VEGF in the cerebral infarction model group were significantly higher than those in the control group, with further increases after administration of FYXN drug serum. FYXN promoted the proliferation and migration of BMECs by activating the Rab1/AT1R signaling pathway. In conclusion, FYXN exerts a protective effect against DMCI by promoting angiogenesis via the Rab1/AT1R pathway, which provides strong evidence for the therapeutic effect of FYXN on DMCI.


Sign in / Sign up

Export Citation Format

Share Document