scholarly journals Crystal structure of anhydrous tripotassium citrate from laboratory X-ray powder diffraction data and DFT comparison

2016 ◽  
Vol 72 (8) ◽  
pp. 1159-1162 ◽  
Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of anhydrous tripotassium citrate, [K3(C6H5O7)]n, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The three unique potassium cations are 6-, 8-, and 6-coordinate (all irregular). The [KOn] coordination polyhedra share edges and corners to form a three-dimensional framework, with channels running parallel to thecaxis. The only hydrogen bond is an intramolecular one involving the hydroxy group and the central carboxylate group, with graph-set motifS(5).

Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of trirubidium citrate, 3Rb+·C6H5O73−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The two independent Rb+cations are seven- and eight-coordinate, with bond-valence sums of 0.99 and 0.92 valence units. The coordination polyhedra share edges and corners to form a three-dimensional framework. The only hydrogen bond is an intramolecular one between the hydroxy group and the central carboxylate, with graph setS(5). The hydrophobic methylene groups lie in pockets in the framework.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of the title compound, 3Rb+·C6H5O73−·H2O, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The hydroxy group participates in an intramolecular hydrogen bond to the deprotonated central carboxylate group with graph-set motifS(5). The water molecule acts as a hydrogen-bond donor to both terminal and central carboxylate O atoms. The three independent rubidium cations are seven-, six- and six-coordinate, with bond-valence sums of 0.84, 1.02, and 0.95, respectively. In the extended structure, their polyhedra share edges and corners to form a three-dimensional network. The hydrophobic methylene groups occupy channels along thebaxis.


2015 ◽  
Vol 30 (2) ◽  
pp. 170-174
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Thomas N. Blanton

The crystal structure of rilpivirine has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rilpivirine crystallizes in space group P21/c (#14) with a = 8.39049(3), b = 13.89687(4), c = 16.03960(6) Å, β = 90.9344(3)°, V = 1869.995(11) Å3, and Z = 4. The most prominent features of the structure are N–H···N hydrogen bonds. These form a R2,2(8) pattern which, along with C1,1(12) and longer chains, yield a three-dimensional hydrogen bond network. The powder pattern has been submitted to International Centre for Diffraction Data, ICDD, for inclusion in future releases of the Powder Diffraction File™.


2020 ◽  
Vol 76 (10) ◽  
pp. 1566-1571
Author(s):  
Andrew J. Cigler ◽  
James A. Kaduk

The crystal structures of the isostructural compounds dipotassium rubidium citrate monohydrate, K2RbC6H5O7(H2O), and potassium dirubidium citrate monohydrate, KRb2C6H5O7(H2O), have been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The compounds are isostructural to K3C6H5O7(H2O) and Rb3C6H5O7(H2O), but exhibit different degrees of ordering of the K and Rb cations over the three metal-ion sites. The K and Rb site occupancies correlate well to both the bond-valence sums and the DFT energies of ordered cation systems. The MO6 and MO7 coordination polyhedra share edges to form a three-dimensional framework. The water molecule acts as a donor in two strong charge-assisted O—H...O hydrogen bonds to carboxylate groups. The hydroxyl group of the citrate anion forms an intramolecular hydrogen bond to one of the central carboxylate oxygen atoms.


Author(s):  
Alagappa Rammohan ◽  
James A. Kaduk

The crystal structure of caesium dihydrogen citrate, Cs+·H2C6H5O7−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The coordination polyhedra of the nine-coordinate Cs+cations share edges to form chains along thea-axis. These chains are linked by corners along thec-axis. The un-ionized carboxylic acid groups form two different types of hydrogen bonds; one forms a helical chain along thec-axis, and the other is discrete. The hydroxy group participates in both intra- and intermolecular hydrogen bonds.


2015 ◽  
Vol 30 (3) ◽  
pp. 270-277
Author(s):  
James A. Kaduk ◽  
Kai Zhong ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of nilotinib has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Nilotinib crystallizes in space group P1 (#1) with a = 4.518 14(3), b = 10.638 01(5), c = 13.703 77(8) Å, α = 68.8607(4), β = 82.1486(5), γ = 84.1978(5)°, V = 607.62(1) Å3, and Z = 1. The most prominent feature of the structure is two strong hydrogen bonds. These form chains with a graph set C1,1(13); the chains run along [111]. Several weak C–H···O hydrogen bonds also contribute to the packing. The powder pattern has been submitted to ICDD for inclusion in future releases of the Powder Diffraction File™.


Author(s):  
Andrew J. Cigler ◽  
James A. Kaduk

The crystal structure of poly[μ-citrato-dilithium(I)potassium(I)], [Li2K(C6H5O7)] n , has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The citrate anion triply chelates to the K+ cation through the hydroxyl group, the central carboxylate, and the terminal carboxylate. The KO7 coordination polyhedra share edges, forming chains parallel to the a axis. These chains share edges with one tetrahedral Li ion, and are bridged by edge-sharing pairs of the second tetrahedral Li ion, forming layers parallel to the ac plane.


2019 ◽  
Vol 34 (4) ◽  
pp. 379-388
Author(s):  
Zachary R. Butler ◽  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of cefprozil monohydrate has been solved and refined using synchrotron X-ray powder diffraction data and optimized using density functional techniques. Cefprozil monohydrate crystallizes in space group P21 (#4) with a = 11.26513(6), b = 11.34004(5), c = 14.72649(11) Å, β = 90.1250(4)°, V = 1881.262(15) Å3, and Z = 4. Although a reasonable fit was obtained using an orthorhombic model, closer examination showed that many peaks were split and/or had shoulders, and thus the true symmetry was monoclinic. DFT calculations revealed that one carboxylic acid proton moved to an amino group. The structure thus contains one ion pair and one pair of neutral molecules. This protonation was confirmed by infrared spectroscopy. There is an extensive array of hydrogen bonds resulting in a three-dimensional network. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™.


2020 ◽  
Vol 76 (10) ◽  
pp. 1611-1616
Author(s):  
James A. Kaduk

The crystal structures of magnesium hydrogen citrate dihydrate, Mg(HC6H5O7)(H2O)2, (I), and bis(dihydrogen citrato)magnesium, Mg(H2C6H5O7)2, (II), have been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. In (I), the citrate anion occurs in the trans, trans-conformation, and triply chelates to the Mg cation. In (II), the citrate anion is trans, gauche, and doubly chelates to the Mg cation. In both compounds the Mg cation coordination polyhedron is an octahedron. In (I), the MgO6 coordination polyhedra are isolated, while in (II), they share edges to form chains. Strong O—H...O hydrogen bonds are prominent in the two structures, as well as in the previously reported magnesium citrate decahydrate.


2009 ◽  
Vol 65 (6) ◽  
pp. i44-i44 ◽  
Author(s):  
Zhen-Hua Liang ◽  
Kai-Bin Tang ◽  
Qian-Wang Chen ◽  
Hua-Gui Zheng

Rubidium dicalcium triniobate(V), RbCa2Nb3O10, has been synthesized by solid-state reaction and its crystal structure refined from X-ray powder diffraction data using Rietveld analysis. The compound is a three-layer perovskite Dion–Jacobson phase with the perovskite-like slabs derived by termination of the three-dimensional CaNbO3perovskite structure along theabplane. The rubidium ions (4/mmmsymmetry) are located in the interstitial space.


Sign in / Sign up

Export Citation Format

Share Document