scholarly journals Crystal structure and Hirshfeld surface analysis of 6-((E)-2-{4-[2-(4-chlorophenyl)-2-oxoethoxy]phenyl}ethenyl)-4,5-dihydropyridazin-3(2H)-one

Author(s):  
Said Daoui ◽  
Israa Muwafaq ◽  
Emine Berrin Çınar ◽  
Abdulmalik Abudunia ◽  
Necmi Dege ◽  
...  

The pyridazine ring in the title compound, C20H17ClN2O3, adopts a screw-boat conformation. The whole molecule is flattened, the dihedral angles subtended by the least-squares plane of the central aromatic ring with those of the terminal benzene and pyridazine rings being 15.18 (19) and 11.23 (19)°, respectively. In the crystal, the molecules are linked by pairs of N—H...O bonds into centrosymmetric dimers and by C—H...π contacts into columns. The results of the Hirshfeld surface analysis show that the most prominent interactions are H...H, accounting for 36.5% of overall crystal packing, and H...O/O...H (18.6% contribution) contacts.

Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Author(s):  
Nada Kheira Sebbar ◽  
Brahim Hni ◽  
Tuncer Hökelek ◽  
Abdelhakim Jaouhar ◽  
Mohamed Labd Taha ◽  
...  

The title compound, C18H12Cl2N2OS, consists of a dihydrobenzothiazine unit linked by a –CH group to a 2,4-dichlorophenyl substituent, and to a propanenitrile unit is folded along the S...N axis and adopts a flattened-boat conformation. The propanenitrile moiety is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, C—HBnz...NPrpnit and C—HPrpnit...OThz (Bnz = benzene, Prpnit = propanenitrile and Thz = thiazine) hydrogen bonds link the molecules into inversion dimers, enclosing R 2 2(16) and R 2 2(12) ring motifs, which are linked into stepped ribbons extending along [110]. The ribbons are linked in pairs by complementary C=O...Cl interactions. π–π contacts between the benzene and phenyl rings, [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (23.4%), H...Cl/Cl...H (19.5%), H...C/C...H (13.5%), H...N/N...H (13.3%), C...C (10.4%) and H...O/O...H (5.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that the two independent C—HBnz...NPrpnit and C—HPrpnit...OThz hydrogen bonds in the crystal impart about the same energy (ca 43 kJ mol−1). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Brahim Hni ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Achour Redouane ◽  
Joel T. Mague ◽  
...  

The title compound, C24H27Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorophenylmethylidene units in which the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz...OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form chains of molecules extending along the a-axis direction, which are connected to their inversion-related counterparts by C—HBnz...ClDchlphy (Dchlphy = 2,4-dichlorophenyl) hydrogen bonds and C—HDchlphy...π (ring) interactions. These double chains are further linked by C—HDchlphy...OThz hydrogen bonds, forming stepped layers approximately parallel to (012). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (44.7%), C...H/H...C (23.7%), Cl...H/H...Cl (18.9%), O...H/H...O (5.0%) and S...H/H...S (4.8%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HDchlphy...OThz, C—HBnz...OThz and C—HBnz...ClDchlphy hydrogen-bond energies are 134.3, 71.2 and 34.4 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. The two carbon atoms at the end of the nonyl chain are disordered in a 0.562 (4)/0.438 (4) ratio.


Author(s):  
Farid N. Naghiyev ◽  
Tatiana A. Tereshina ◽  
Victor N. Khrustalev ◽  
Mehmet Akkurt ◽  
Ali N. Khalilov ◽  
...  

In the title compound, C16H15N5, the 1,4-dihydropyridine ring has a shallow boat conformation, while the 1,3-diazinane ring adopts an envelope conformation. In the crystal, pairwise N—H...N hydrogen bonds generate centrosymmetric dimers featuring R 2 2(12) motifs and C—H...N contacts connect these dimers to form double layers lying parallel to (001). Weak C—H...π and N—H...π interactions help to consolidate the double layers and van der Waals interactions occur between layers. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (38.5%), N...H/H...N (33.3%) and C...H/H...C (27.3%) contacts.


Author(s):  
Brahim Hni ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Younes Ouzidan ◽  
Ahmed Moussaif ◽  
...  

The title compound, C18H12FNOS, is built up from a 4-fluorobenzylidene moiety and a dihydrobenzothiazine unit with a propynyl substituent, with the heterocyclic portion of the dihydrobenzothiazine unit adopting a shallow boat conformation with the propynyl substituent nearly perpendicular to it. The two benzene rings are oriented at a dihedral angle of 43.02 (6)°. In the crystal, C—HFlurphen...FFlurphen (Flurphen = fluorophenyl) hydrogen bonds link the molecules into inversion dimers, enclosing R 2 2(8) ring motifs, with the dimers forming oblique stacks along the a-axis direction. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...H (33.9%), H...C/C...H (26.7%), H...F/F...H (10.9%) and C...C (10.6%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Nigar E. Ahmadova ◽  
Rizvan K. Askerov ◽  
...  

In the molecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups. In the crystal, molecules are linked by C—H...π, C—Cl...π, Cl...Cl and Cl...H interactions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (30.4%), C...H/H...C (20.4%), Cl...H/H...Cl (19.4%), Cl...Cl (7.8%) and Cl...C/C...Cl (7.3%) interactions.


Author(s):  
Ghizlane Sebbar ◽  
Brahim Hni ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
Nada Kheira Sebbar ◽  
...  

The title compound, C22H25NOS, consists of methylbenzylidene and benzothiazine units linked to a hexyl moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, inversion dimers are formed by weak C—HMthn...OBnzthz hydrogen bonds and are linked into chains extending along the a-axis direction by weak C—HBnz...OBnzthz (Bnz = benzene, Bnzthz = benzothiazine and Mthn = methine) hydrogen bonds. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (59.2%) and H...C/C...H (27.9%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz...OBnzthz and C—HMthn...OBnzthz hydrogen-bond energies are 75.3 and 56.5 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound was evaluated against gram-positive and gram-negative bacteria.


Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Sumeyye Turanli ◽  
Deniz Lengerli ◽  
Erden Banoglu ◽  
...  

In the title compound, C24H20ClNO2, the mean planes of 4-chlorophenyl, 2-methylphenyl and phenylene rings make dihedral angles of 62.8 (2), 65.1 (3) and 15.1 (2)°, respectively, with the 5-methyl-1,2-oxazole ring. In the crystal, molecules are linked by intermolecular C—H...N, C—H...Cl, C—H...π contacts and π–π stacking interactions between the phenylene groups. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (48.7%), H...C/C...H (22.2%), Cl...H/H...Cl (8.8%), H...O/O...H (8.2%) and H...N/N...H (5.1%) interactions.


Author(s):  
Ghizlane Sebbar ◽  
Ellouz Mohamed ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
Nada Kheira Sebbar ◽  
...  

The title compound, C19H16ClNO3S, consists of chlorophenyl methylidene and dihydrobenzothiazine units linked to an acetate moiety, where the thiazine ring adopts a screw-boat conformation. In the crystal, two sets of weak C—HPh...ODbt (Ph = phenyl and Dbt = dihydrobenzothiazine) hydrogen bonds form layers of molecules parallel to the bc plane. The layers stack along the a-axis direction with intercalation of the ester chains. The crystal studied was a two component twin with a refined BASF of 0.34961 (5). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...H (37.5%), H...C/C...H (24.6%) and H...O/O...H (16.7%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, C—HPh...ODbt hydrogen bond energies are 38.3 and 30.3 kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap. Moreover, the antibacterial activity of the title compound has been evaluated against gram-positive and gram-negative bacteria.


2019 ◽  
Vol 75 (11) ◽  
pp. 1650-1656 ◽  
Author(s):  
Nada Kheira Sebbar ◽  
Brahim Hni ◽  
Tuncer Hökelek ◽  
Mohamed Labd Taha ◽  
Joel T. Mague ◽  
...  

The title compound, C22H15Cl2NOS, contains 1,4-benzothiazine and 2,4-dichlorobenzylidene units, where the dihydrothiazine ring adopts a screw-boat conformation. In the crystal, intermolecular C—HBnz...OThz (Bnz = benzene and Thz = thiazine) hydrogen bonds form corrugated chains extending along the b-axis direction which are connected into layers parallel to the bc plane by intermolecular C—HMethy...SThz (Methy = methylene) hydrogen bonds, enclosing R 4 4(22) ring motifs. Offset π-stacking interactions between 2,4-dichlorophenyl rings [centroid–centroid = 3.7701 (8) Å] and π-interactions which are associated by C—HBnz...π(ring) and C—HDchlphy...π(ring) (Dchlphy = 2,4-dichlorophenyl) interactions may be effective in the stabilization of the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (29.1%), H...C/C...H (27.5%), H...Cl/Cl...H (20.6%) and O...H/H...O (7.0%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the C—HBnz...OThz and C—HMethy...SThz hydrogen-bond energies are 55.0 and 27.1 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Sign in / Sign up

Export Citation Format

Share Document