scholarly journals Crystal structure and Hirshfeld surface analysis of 1-[(benzyldimethylsilyl)methyl]-1-ethylpiperidin-1-ium ethanesulfonate

Author(s):  
Jan-Lukas Kirchhoff ◽  
Stephan G. Koller ◽  
Kathrin Louven ◽  
Carsten Strohmann

The title molecular salt, C17H30NSi+·C2H5O4S−, belongs to the class of a-aminosilanes and was synthesized by the alkylation of 1-[(benzyldimethylsilyl)methyl]piperidine using diethyl sulfate. This achiral salt crystallizes in the chiral space group P21. One of the Si—C bonds in the cation is unusually long [1.9075 (12) Å], which correlates with the adjacent quaternary N+ atom and was verified by quantum chemical calculations. In the crystal, the components are linked by weak C—H...O hydrogen bonds: a Hirshfeld surface analysis was performed to further investigate these intermolecular interactions and their effects on the crystal packing.

2020 ◽  
Vol 76 (11) ◽  
pp. 1794-1798
Author(s):  
Zouaoui Setifi ◽  
Hela Ferjani ◽  
Fatima Setifi ◽  
Safa Ezzine ◽  
Mohammed Hadi Al-Douh

In the title molecular salt, (C10H10N3)2[Ni(CN)4], the dihedral angle between the pyridine rings in the cation is 1.92 (13)° and the complete anion is generated by a crystallographic centre of symmetry. An intramolecular N—H...N hydrogen bond occurs in the cation, which closes an S(6) ring. In the crystal, the components are linked by N—H...N and weak C—H...N hydrogen bonds, which generate chains propagating in the [101] direction. Weak aromatic π–π stacking interactions are also observed. A Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contact types in the crystal packing are N...H/H...N, C...H/H...C and H...H with contributions of 37.2, 28.3 and 21.9%, respectively.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Author(s):  
David Z. T. Mulrooney ◽  
Helge Müller-Bunz ◽  
Tony D. Keene

The reaction of 1,5-dibromopentane with urotropine results in crystals of the title molecular salt, 5-bromourotropinium bromide [systematic name: 1-(5-bromopentyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane bromide], C11H22BrN4 +·Br− (1), crystallizing in space group P21/n. The packing in compound 1 is directed mainly by H...H van der Waals interactions and C—H...Br hydrogen bonds, as revealed by Hirshfeld surface analysis. Comparison with literature examples of alkylurotropinium halides shows that the interactions in 1 are consistent with those in other bromides and simple chloride and iodide species.


Author(s):  
Seher Meral ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Galyna G. Tsapyuk

In the molecule of the title compound, C16H20N2O6S2, the mid-point of the C—C bond of the central ethane moiety is located on a twofold rotation axis. In the crystal, molecules are linked by N—H...O hydrogen bonds into supramolecular chains propagating along the [101] direction. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (43.1%), O...H/H...O (40.9%), C...H/H...C (8.8%) and C...C (5.5%) interactions.


Author(s):  
Nada Kheira Sebbar ◽  
Brahim Hni ◽  
Tuncer Hökelek ◽  
Abdelhakim Jaouhar ◽  
Mohamed Labd Taha ◽  
...  

The title compound, C18H12Cl2N2OS, consists of a dihydrobenzothiazine unit linked by a –CH group to a 2,4-dichlorophenyl substituent, and to a propanenitrile unit is folded along the S...N axis and adopts a flattened-boat conformation. The propanenitrile moiety is nearly perpendicular to the mean plane of the dihydrobenzothiazine unit. In the crystal, C—HBnz...NPrpnit and C—HPrpnit...OThz (Bnz = benzene, Prpnit = propanenitrile and Thz = thiazine) hydrogen bonds link the molecules into inversion dimers, enclosing R 2 2(16) and R 2 2(12) ring motifs, which are linked into stepped ribbons extending along [110]. The ribbons are linked in pairs by complementary C=O...Cl interactions. π–π contacts between the benzene and phenyl rings, [centroid–centroid distance = 3.974 (1) Å] may further stabilize the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (23.4%), H...Cl/Cl...H (19.5%), H...C/C...H (13.5%), H...N/N...H (13.3%), C...C (10.4%) and H...O/O...H (5.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry calculations indicate that the two independent C—HBnz...NPrpnit and C—HPrpnit...OThz hydrogen bonds in the crystal impart about the same energy (ca 43 kJ mol−1). Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Hassiba Bougueria ◽  
Souheyla Chetioui ◽  
Mohammed Abdellatif Bensegueni ◽  
Jean-Pierre Djukic ◽  
Nesrine Benarous

The title compound, C16H11ClN2O2, was obtained by diazotization of 2-amino-4-chlorophenol followed by a coupling reaction with β-naphthol. There are two molecules (A and B) in the asymmetric unit. The crystal structure features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (32.1%), C...H/H...C (23.1%), Cl...H/H...Cl (15.2%), O...H/H...O (12.8%) and C...C (9%) contacts.


Author(s):  
Shaaban K. Mohamed ◽  
Awad I. Said ◽  
Joel T. Mague ◽  
Talaat I. El-Emary ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H...O and C—H...N hydrogen bonds and C—H...π(ring) interactions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H...H (44.3%), C...H/H...C (29.8%) and O...H/H...O (15.0%) contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1674-1677
Author(s):  
Ercan Aydemir ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Hasan Genc ◽  
Snizhana V. Gaidai

In the title compound, C13H14N4O·2H2O, the organic molecule is almost planar. In the crystal, the molecules are linked by O—H...O, N—H...O and O—H...N hydrogen bonds, forming a two-dimensional network parallel to (10\overline{1}). Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (55.4%), H...O/O...H (14.8%), H...C/C...H (11.7%) and H...N/N...H (8.3%) interactions.


Author(s):  
K. Osahon Ogbeide ◽  
Rajesh Kumar ◽  
Mujeeb-Ur-Rehman ◽  
Bodunde Owolabi ◽  
Abiodun Falodun ◽  
...  

The title compound, C29H36O5, a cassane-type diterpenoid {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl 3-phenylprop-2-enoate}, was isolated from a medicinally important plant,Caesalpinia pulcherrima(Fabaceae). In the molecule, three cyclohexane rings aretrans-fused and adopt chair, chair and half-chair conformations. In the crystal, molecules are linkedviaO—H...O hydrogen bonds, forming a tape structure along theb-axis direction. The tapes are further linked into a double-tape structure through C—H...π interactions. The Hirshfeld surface analysis indicates that the contributions to the crystal packing are H...H (65.5%), C...H (18.7%), O...H (14.5%) and C...O (0.3%).


2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.


Sign in / Sign up

Export Citation Format

Share Document