scholarly journals Synthesis, crystal structure and Hirshfeld surface analysis of dimethyl 3-(3-bromophenyl)-6-methyl-7-oxo-3,5,6,7-tetrahydropyrazolo[1,2-a]pyrazole-1,2-dicarboxylate

Author(s):  
Rahhal El Ajlaoui ◽  
Yassine Hakmaoui ◽  
El Mostapha Rakib ◽  
El Mostafa Ketatni ◽  
Mohamed Saadi ◽  
...  

The title compound, C17H17BrN2O5, resulted from the 1,3-dipolar cycloaddition reaction between dimethyl acetylenedicarboxylate and (3-bromobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide in CHCl3. The dihedral angle between the pyrazole rings (all atoms) is 32.91 (10)°; the oxo-pyrazole ring displays an envelope conformation whereas the other pyrazole ring adopts a twisted conformation. The bromophenyl ring subtends a dihedral angle of 88.95 (9)° with the mean plane of its attached pyrazole ring. In the crystal, the molecules are linked by C—H...O hydrogen bonds and aromatic π–π interactions with an inter-centroid distance of 3.8369 (10) Å. The Hirshfeld surface analysis and fingerprint plots reveal that the molecular packing is governed by H...H (37.1%), O...H/H...O (31.3%), Br...H/H...Br (13.5%) and C...H/H...C (10.6%) contacts. The energy framework indicates that dispersion energy is the major contributor to the molecular packing.

2020 ◽  
Vol 76 (7) ◽  
pp. 1092-1095
Author(s):  
Ropak A. Sheakh Mohamad ◽  
Hashim J. Aziz ◽  
Wali M. Hamad

In the title compound, C27H28N2OS, the naphthalene unit is planar to within 0.015 (2) Å and makes a dihedral angle of 14.24 (16)° with the thiazole ring. The anisole ring is inclined to the thiazole ring by a dihedral angle of 13.18 (23)°. The torsion angle between the heptyl chain and the anisole ring is 61.1 (4)°. These dihedral and torsion angles render the molecule non-planar. In the crystal, molecules are linked by C—H...π interactions, forming zigzag chains that propagate parallel to the b axis. The roles of the various intermolecular interactions in the crystal packing were clarified by Hirshfeld surface analysis; the most important contributions are from H...H (51.5%) and C...H/H...C (31.8%) contacts.


2021 ◽  
Vol 77 (10) ◽  
pp. 1043-1047
Author(s):  
Nazariy T. Pokhodylo ◽  
Yurii Slyvka ◽  
Volodymyr Pavlyuk

The title compound, C15H18N4O2, was obtained via a two-step synthesis (Dimroth reaction and amidation) for anticancer activity screening and was selected from a 1H-1,2,3-triazole-4-carboxamide library. The cyclopropyl ring is oriented almost perpendicular to the benzene ring [dihedral angle = 87.9 (1)°], while the dihedral angle between the mean plane of the cyclopropyl ring and that of the triazole ring is 55.6 (1)°. In the crystal, the molecules are linked by O—H...O and C—H...N interactions into infinite ribbons propagating in the [001] direction, which are interconnected by weak C—H...O interactions into layers. The intermolecular interactions were characterized via Hirshfeld surface analysis, which indicated that the largest fingerprint contact percentages are H...H (55.5%), N...H/H...N (15.4%), C...H/H...C (13.2%) and O...H/H...O (12.9%).


Author(s):  
Eric Ziki ◽  
Siaka Sosso ◽  
Frédérica Mansilla-Koblavi ◽  
Abdoulaye Djandé ◽  
Rita Kakou-Yao

In the title compound, C16H9ClO4the dihedral angle between the coumarin ring system [maximum deviation = 0.023 (1) Å] and the benzene ring is 73.95 (8)°. In the crystal, π–π interactions link the dimers into a three-dimensional framework. A quantum chemical calculation is in generally good agreement with the observed structure, although the calculated dihedral angle between the ring systems (85.7%) is somewhat larger than the observed value [73.95 (8)°]. Hirshfeld surface analysis has been used to confirm and quantify the supramolecular interactions.


Author(s):  
Vladimir P. Zaytsev ◽  
Lala V. Chervyakova ◽  
Elena A. Sorokina ◽  
Kirill A. Vasilyev ◽  
Sevim Türktekin Çelikesir ◽  
...  

In the title compound, C20H19NO5, the central six-membered ring has a slightly distorted half-chair conformation, with puckering parameters of Q T = 0.3387 (11) Å, θ = 49.11 (19)° and φ = 167.3 (2)°. The conformation of the fused pyrrolidine ring is that of an envelope. Molecules are connected by intermolecular C—H...O hydrogen bonds, C—H...π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.9536 (11) Å, with a slippage of 2.047 Å], forming a three-dimensional network. The most important contributions to the surface contacts are from H...H (46.3%), O...H/H...O (31.5%) and C...H/H...C (17.3%) interactions, as concluded from a Hirshfeld surface analysis.


2018 ◽  
Vol 74 (12) ◽  
pp. 1746-1750 ◽  
Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Brahim Hni ◽  
Joel T. Mague ◽  
...  

In the title compound, C21H20N4O2, the intramolecular C—H...O hydrogen-bonded benzodiazolone moieties are planar to within 0.017 (1) and 0.026 (1) Å, and are oriented at a dihedral angle of 57.35 (3)°. In the crystal, two sets of intermolecular C—H...O hydrogen bonds generate layers parallel to the bc plane. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.8%), H...C/C...H (30.7%) and H...O/O...H (11.2%) interactions.


Author(s):  
Firudin I. Guseinov ◽  
Konstantin I. Kobrakov ◽  
Bogdan I. Ugrak ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
...  

The bicyclic imidazo[1,2-a]pyridine core in the molecule of the title compound, C10H7F3N2O, is planar within 0.004 (1) Å. In the crystal, the molecules are linked by pairs of C—H...N and C—H...O hydrogen bonds, forming strips. These strips are connected by the F...F contacts into layers, which are further joined by π–π stacking interactions. The Hirshfeld surface analysis and fingerprint plots reveal that molecular packing is governed by F...H/H...F (31.6%), H...H (16.8%), C...H/H...C (13.8%) and O...H/H...O (8.5%) contacts.


Author(s):  
Ropak A. Sheakh Mohamad ◽  
Wali M. Hamad ◽  
Hashim J. Aziz

The asymmetric unit of the title compound, C23H20N2OS, contains one slightly bent molecule. The naphthalene ring system and the thiazole ring are twisted with respect to each other, making a dihedral angle of 13.69 (10)°; the anisole ring is inclined to the plane of the naphthalene ring system, the dihedral angle being 14.22 (12)°. In the crystal structure, molecules are linked by C—H...π interactions, resulting in the formation of sheets parallel to (100). Within the sheets, very weak π–π stacking interactions lead to additional stabilization. Hirshfeld surface analysis and fingerprint plots reveal that the cohesion in the crystal structure is dominated by H...H (42.5%) and C...H/H...C (37.2%) contacts.


2018 ◽  
Vol 74 (12) ◽  
pp. 1815-1820
Author(s):  
Nadeem Abad ◽  
Youssef Ramli ◽  
Tuncer Hökelek ◽  
Nada Kheira Sebbar ◽  
Joel T. Mague ◽  
...  

The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methylene bridge to a 1,2,3-triazole ring, which in turn carries ann-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the molecules form oblique stacks along thea-axis direction through intermolecular C—HTrz...NTrz(Trz = triazole) hydrogen bonds, and offset π-stacking interactions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and π–π interactions, which are associated pairwise by inversion-related C—HDhydqn...π(ring) (Dhydqn = dihydroquinoxaline) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.7%), H...N/N...H (18.9%) and H...C/C...H (17.0%) interactions.


2020 ◽  
Vol 76 (8) ◽  
pp. 1251-1254
Author(s):  
Kadriye Özkaraca ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Gulnar T. Suleymanova ◽  
...  

In the title compound, C18H19Cl2N3, the planes of the benzene rings subtend a dihedral angle of 77.07 (10)°. In the crystal, molecules are associated into inversion dimers via short Cl...Cl contacts [3.3763 (9) Å]. A Hirshfeld surface analysis indicates that the most important contact percentages for the different types of interactions are H...H (43.9%), Cl...H/H...Cl (22.9%), C...H/H...C (20.8%) and N...H/H...N (8.0%).


Author(s):  
Akmal Tojiboev ◽  
Sherzod Zhurakulov ◽  
Valentina Vinogradova ◽  
Ulli Englert ◽  
Ruimin Wang

At 100 K, the title compound, C13H12N2O2, crystallizes in the orthorhombic space group Pna21 with two very similar molecules in the asymmetric unit. An intramolecular N—H...O hydrogen bond leads to an S(6) graph-set motif in each of the molecules. Intermolecular π–π stacking and C=O...π interactions involving the aldehyde O atoms link molecules into stacks parallel to [100]. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing stem from H...H (49.4%) and H...O/O...H (21.5%) interactions. Energy framework calculations reveal a significant contribution of dispersion energy. The crystal studied was refined as a two-component inversion twin.


Sign in / Sign up

Export Citation Format

Share Document