scholarly journals Syntheses and crystal structures of 2-(p-tolyl)-1H-perimidine hemihydrate and 1-methyl-2-(p-tolyl)-1H-perimidine

Author(s):  
Paulina Kalle ◽  
Sergei V. Tatarin ◽  
Marina A. Kiseleva ◽  
Alexander Yu. Zakharov ◽  
Daniil E. Smirnov ◽  
...  

The title compounds, 2-(4-methylphenyl)-1H-perimidine hemihydrate (1, C18H14N2·0.5H2O) and 1-methyl-2-(4-methylphenyl)-1H-perimidine (2, C19H16N2), were prepared and characterized by 1H NMR and single-crystal X-ray diffraction. The organic molecule of the hemihydrate lies on a twofold rotation axis while the water molecule lies on the intersection of three twofold rotation axes (point group symmetry 222). As a consequence, the hydrogen atoms that are part of the N—H group and the water molecule as well as the CH3 group of the p-tolyl ring are disordered over two positions. In compound 1, the perimidine and the 2-aryl rings are slightly twisted while its N-methylated derivative 2 has a more distorted conformation because of the steric repulsion between the N-methyl group and the 2-aryl ring. In the crystal structures, molecules of perimidine 2 are held together only by C—H...π contacts while the parent perimidine 1 does not exhibit this type of interaction. Its crystal packing is established by intermolecular N—H...O hydrogen bonds with the solvent water molecules and additionally stabilized by π–π stacking.

1988 ◽  
Vol 43 (2) ◽  
pp. 189-195 ◽  
Author(s):  
Walter Frank ◽  
Thomas Stetzer ◽  
Ludwig Heck

The title compound 1 can be obtained from an aqueous solution of aquopentaammine rhodium(III) dithionate and hydroxopentaammine rhodium(III) dithionate. The crystal structure has been determined from single crystal X-ray diffraction data and refined to R = 0.035 for 4390 unique reflections. Crystal data: monoclinic, space group P21/c, a = 1300.9(5) pm. b = 1472.3(6) pm. c = 1478.8(9) pm, β = 106.20(4)°, Z = 4.In the crystal dinuclear rhodium cations with point group symmetry 1 (C1) are found. A central μ-H3O2-bridge is formed by strong hydrogen bonding between aquo and hydroxo ligands; this bridge is additionally coordinated by two molecules of water. The entire bridging system is therefore H7O4-(H3O2- · 2 H2O). O-O distances characterizing the strength of the three hydrogen bonds within this new kind of structural unit are O(H2O-Rh 1)-O(HO-Rh2): 248 pm. O(H2O-Rh 1)-O(H2Oa): 273 pm, O(HO-Rh2)-O(H2Ob): 287 pm. The hydrogen atoms involved in these bridges have been located. The small difference in the Rh 1-O(H2O) - (205.4(3) pm) and Rh2-O(OH)- (204.3(3) pm) distances indicates that the entire H7O4-- moiety serves as a μ-bridging unit between Rh 1 and Rh 2


2019 ◽  
Vol 75 (9) ◽  
pp. 1386-1388
Author(s):  
Trpimir Ivšić ◽  
David Wenhua Bi ◽  
Arnaud Magrez

The crystal structure of [ZnCl2(NH3)2], diamminedichloridozinc, was re-investigated at low temperature, revealing the positions of the hydrogen atoms and thus a deeper insight into the hydrogen-bonding scheme in the crystal packing. In comparison with previous crystal structure determinations [MacGillavry & Bijvoet (1936). Z. Kristallogr. 94, 249–255; Yamaguchi & Lindqvist (1981). Acta Chem. Scand. 35, 727–728], an improved precision of the structural parameters was achieved. In the crystal, tetrahedral [Zn(NH3)2Cl2] units (point-group symmetry mm2) are linked through N—H...Cl hydrogen bonds into a three-dimensional network.


2015 ◽  
Vol 71 (11) ◽  
pp. 1408-1410 ◽  
Author(s):  
Noé Makon ma Houga ◽  
Frédéric Capet ◽  
Justin Nenwa ◽  
Gouet Bebga ◽  
Michel Foulon

In the title hybrid salt, (C7H11N2)3[Cr(C2O4)3]·4H2O, the central CrIIIion of the complex anion (point group symmetry 2) is coordinated by six O atoms from three chelating oxalate(2−) ligands in a slightly distorted octahedral coordination sphere. The Cr—O bond lengths vary from 1.9577 (11) to 1.9804 (11) Å, while the chelate O—Cr—O angles range from 82.11 (6) to 93.41 (5)°. The 4-(dimethylamino)pyridinium cations (one situated in a general position and one on a twofold rotation axis) are protonated at the pyridine N atoms. In the crystal, N—H...O and O—H...O hydrogen bonds link the cations and anions into a three-dimensional network. π–π interactions between the pyridine rings of adjacent cations provide additional stabilization of the crystal packing, with the closest centroid-to-centroid distances being 3.541 (1) and 3.575 (1) Å.


Author(s):  
Nesrine Amiri ◽  
Soumaya Nasri ◽  
Thierry Roisnel ◽  
Gérard Simonneaux ◽  
Habib Nasri

The title compound, [Mg(C44H24Br4N4)(H2O)2] or [Mg(TBrPP)(H2O)2], where TBrPP is the 5,10,15,20-tetrakis(4-bromophenyl)porphyrinato ligand, was obtained unintentionally as a by-product of the reaction of the [Mg(TBrPP)] complex with an excess of dimethylglyoxime in dichloromethane. The entire molecule exhibits point group symmetry 4/m. In the asymmetric unit, except for two C atoms of the phenyl ring, all other atoms lie on special positions. The MgIIatom is situated at a site with symmetry 4/m, while the N and the C atoms of the porphyrin macrocycle, as well as two C atoms of the phenyl ring and the Br atom lie in the mirror plane containing the porphyrin core. The H atoms of the axially bonded water molecule are incompatible with the fourfold rotation axis and are disordered over two sites. In the crystal, molecules are packed in rows along [001]. Weak intermolecular C—H...π and C—H...Br interactions, as well as O—H...Br hydrogen bonds, stabilize the crystal packing.


2015 ◽  
Vol 71 (10) ◽  
pp. m183-m184 ◽  
Author(s):  
Stanislav I. Bezzubov ◽  
Vladimir D. Doljenko ◽  
Andrei V. Churakov ◽  
Irina S. Zharinova ◽  
Yuri M. Kiselev

The chiral title compound, [CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)], comprises a complex heterometallic Ni/Ce cation and a homonuclear Ce anion. Both the cation and anion exhibit point group symmetry 3. with the CeIIIatom situated on the threefold rotation axis. The cation metal core consists of six NiIIatoms coordinated in a slightly distorted octahedral N2O4configuration by N and O atoms of 12 deprotonated L-alaninate ligands exhibiting both bridging and chelating modes. This metal–organic coordination motif encapsulates one CeIIIatom that shows an icosahedral coordination by the O-donor atoms of the L-alaninate ligands, with Ce—O distances varying in the range 2.455 (5)–2.675 (3) Å. In the anion, the central CeIIIion is bound to three bidentate nitrate ligands, to three hydroxide ligands and to one water molecule, with Ce—O distances in the range 2.6808 (19)–2.741 (2) Å. The H atoms of the coordinating water molecule are disordered over three positions due to its location on a threefold rotation axis. Disorder is also observed in fragments of two L-alaninate ligands, with occupancy ratios of 0.608 (14):0.392 (14) and 0.669 (8):0.331 (8), respectively, for the two sets of sites. In the crystal, the complex cations and anions assemble through O—H...O and N—H...O hydrogen bonds into a three-dimensional network with large voids of approximately 1020 Å3. The contributions of highly disordered ethanol and water solvent molecules to the diffraction data were removed with the SQUEEZE procedure [Spek (2015).Acta Cryst.C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown amount of these solvent molecules.


2018 ◽  
Vol 74 (11) ◽  
pp. 1427-1433 ◽  
Author(s):  
Ewa Żesławska ◽  
Wojciech Nitek ◽  
Waldemar Tejchman ◽  
Jadwiga Handzlik

The arylidene–imidazolone derivatives are a group of compounds of great interest in medicinal chemistry due to their various pharmacological actions. In order to study the possible conformations of an arylidene–imidazolone derivative, two new crystal structures were determined by X-ray diffraction, namely (Z)-5-(4-chlorobenzylidene)-2-(4-methylpiperazin-1-yl)-3H-imidazol-5(4H)-one, C15H17ClN4O, (6), and its salt 4-[5-(4-chlorobenzylidene)-5-oxo-4,5-dihydro-3H-imidazol-2-yl]-1-methylpiperazin-1-ium 3-{5-[4-(diethylamino)benzylidene]-4-oxo-2-thioxothiazolidin-3-yl}propionate, C15H18ClN4O+·C17H19N2O3S2 −, (7). Both compounds crystallize in the space group P\overline{1}. The basic form (6) crystallizes with two molecules in the asymmetric unit. In the acid form of (6), the N atom of the piperazine ring is protonated by proton transfer from the carboxyl group of the rhodanine acid derivative. The greatest difference in the conformations of (6) and its protonated form, (6c), is observed in the location of the arylidene–imidazolone substituent at the N atom. In the case of (6c), the position of this substituent is close to axial, while for (6), the corresponding position is intermediate between equatorial and axial. The crystal packing is dominated by a network of N—H...O hydrogen bonds. Furthermore, the crystal structures are stabilized by numerous intermolecular contacts of types C—H...N and C—H...Cl in (6), and C—H...O and C—H...S in (7). The geometry with respect to the location of the substituents at the N atoms of the piperazine ring was compared with other crystal structures possessing an N-methylpiperazine moiety.


2013 ◽  
Vol 69 (10) ◽  
pp. 1112-1115 ◽  
Author(s):  
Rüdiger W. Seidel ◽  
Christina Dietz ◽  
Jürgen Breidung ◽  
Richard Goddard ◽  
Iris M. Oppel

The title compound, [Zn(SiF6)(C12H8N2)2]·CH3OH, contains a neutral heteroleptic tris-chelate ZnIIcomplex,viz.[Zn(SiF6)(phen)2] (phen is 1,10-phenanthroline), exhibiting approximate molecularC2point-group symmetry. The ZnIIcation adopts a severely distorted octahedral coordination. As far as can be ascertained, the title complex represents the first structurally characterized example of a ZnIIcomplex bearing a bidentate-bound hexafluorosilicate ligand. A density functional theory study of the isolated [Zn(SiF6)(phen)2] complex was undertaken to reveal the influence of crystal packing on the molecular structure of the complex. In the crystal structure, the methanol solvent molecule forms a hydrogen bond to one F atom of the hexafluorosilicate ligand. The hydrogen-bonded assemblies so formed are tightly packed in the crystal, as indicated by a high packing coefficient (74.1%).


2019 ◽  
Vol 75 (9) ◽  
pp. 1250-1258 ◽  
Author(s):  
Lina Jia ◽  
Songgu Wu ◽  
Junbo Gong

A drug–drug anhydrous pharmaceutical salt containing tolbutamide {systematic name: 3-butyl-1-[(4-methylbenzene)sulfonyl]urea, TOL, C12H18N2O3S} and metformin (systematic name: 1-carbamimidamido-N,N-dimethylmethanimidamide, MET, C4H11N5) was created based on antidiabetic drug combinations to overcome the poor pharmaceutical properties of the parent drugs. Proton transfer and the proportion of the two components were confirmed by 1H NMR spectroscopy and single-crystal X-ray diffraction analysis. Comprehensive characterization of the new pharmaceutical salt crystal, 2-[(dimethylamino)(iminiumyl)methyl]guanidine (butylcarbamoyl)[(4-methylbenzene)sulfonyl]azanide, C4H12N5 +·C12H17N2O3S−, was performed and showed enhancement of the pharmaceutical properties, such as lower hygroscopicity and greater accelerated stability than the parent drug MET, and higher solubility and dissolution rate than TOL. The property alterations were correlated with the crystal packing features and potential hydrogen-bonding sites through observed changes in the crystal structures.


2019 ◽  
Vol 75 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Zahra Mardani ◽  
Mohammad Hakimi ◽  
Keyvan Moeini ◽  
Fabian Mohr

The reaction between 2-[2-(aminoethyl)amino]ethanol and pyridine-2-carbaldehyde in a 1:2 molar ratio affords a mixture containing 2-({2-[(pyridin-2-ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2-hydroxyethyl)({2-[(pyridin-2-ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1, and dichlorido{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2, which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single-crystal X-ray diffraction. PMAE is potentially a tetradentate N3O-donor ligand but coordinates to copper here as an N2 donor. In the structure of 1, the geometry around the Cu atom is distorted square pyramidal. In 2, the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2. The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies and compared with doxorubicin.


2004 ◽  
Vol 68 (1) ◽  
pp. 147-165 ◽  
Author(s):  
U. Kolitsch

AbstractThe previously unknown, complex crystal structures of two fibrous ferric iron phosphate minerals have been solved using single-crystal X-ray diffraction data. The structure of a slightly arsenatian kidwellite has been refined in space group P2/c (a = 20.117(4), b = 5.185(1), c = 13.978(3)Å, β = 107.07(3)°, V = 1393.8(5)Å3, Z = 2) to R1 = 5.21%; a revision of both space group symmetry and chemical formula is proposed. The idealized formula is Na(Fe3+,M)9+x(OH)11(H2O)3(PO4)6, where M = Fe3+, Cu2+ or other metal cation, and x ≈ 0.3. The structure of a slightly arsenatian ‘laubmannite’ (as defined by Moore, 1970) has been refined in space group Pbcm (a = 5.172(1), b = 13.999(3), c = 31.083(6)Å, V = 2250.5(8)Å3, Z = 4) to R1 = 3.14%. The revised, idealized formula is (Fe3+,Fe2+,M)8+x(OH,H2O)9(-H2O)2(PO4)5, where M = Fe3+, Cu2+ or other metal cation, and x ≈ 0.1. The framework structures of both minerals are similar. Dominant building units are dimers composed of face- and edge-sharing FeO6 octahedra. Whereas kidwellite contains an additional trimer built of three corner-sharing FeO6 octahedra, ‘laubmannite’ instead contains a dimer built of two corner-sharing FeO6 octahedra. Kidwellite contains only trivalent iron, while one of the Fe sites in ‘laubmannite’ is occupied by a mixture of Fe3+ and Fe2+ in a 1:1 ratio. In both structures, the FeO6-based building units are linked via corners to PO4 tetrahedra; the M sites are located in narrow channels and have very low occupancies (~2 to 7%) and strongly distorted [6]- or [5+1]-coordinations. Close structural relations between kidwellite and ‘laubmannite’, and other fibrous iron phosphates explain observations of epitaxial intergrowths of them.


Sign in / Sign up

Export Citation Format

Share Document