Signal reconstruction and disturbance observer-based fault-tolerant control for civil aircrafts

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xinjian Ma ◽  
Shiqian Liu ◽  
Huihui Cheng ◽  
Weizhi Lyu

Purpose This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance. Design/methodology/approach First, a three-step cubature Kalman filter (TSCKF) is designed to detect and isolate the sensor fault and to reconstruct the sensor signal. Meanwhile, a nonlinear disturbance observer (NDO) is designed for disturbance estimation. The NDO and the TSCKF are combined together and an NDO-TSCKF is proposed to solve the problem of sensor faults and bounded disturbances simultaneously. Furthermore, an FTC scheme is designed based on the nonlinear dynamic inversion (NDI) and the NDO-TSCKF. Findings The method is verified by a Cessna 172 aircraft model under bias gyro fault and constant angular rate disturbance. The proposed NDO-TSCKF has the ability of signal reconstruction and disturbance estimation. The proposed FTC scheme is also able to solve the sensor fault and disturbance simultaneously. Research limitations/implications NDO-TSCKF is the novel algorithm used in sensor signal reconstruction for aircraft. Then, disturbance observer-based FTC can improve the flight control system performances when the system with faults. Practical implications The NDO-TSCKF-based FTC scheme can be used to solve the sensor fault and exterior disturbance in flight control. For example, the bias gyro fault with constant angular rate disturbance of a civil aircraft is studied. Social implications Signal reconstruction for critical sensor faults and disturbance observer-based FTC for civil aircraft are useful in modern civil aircraft design and development. Originality/value This is the research paper studies on the signal reconstruction and FTC scheme for civil aircraft. The proposed NDO-TSCKF is better than the current reconstruction filter because the failed sensor signal can be reconstructed under disturbances. This control scheme has a better fault-tolerant capability for sensor faults and bounded disturbances than using regular NDI control.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gulay Unal

Purpose Fault detection, isolation and reconfiguration of the flight control system is an important problem to obtain healthy flight. This paper aims to propose an integrated approach for aircraft fault-tolerant control. Design/methodology/approach The integrated structure includes a Kalman filter to obtain without noise, a full order observer for sensor fault detection, a GOS (generalized observer scheme) for sensor fault isolation and a fuzzy controller to reconfigure of the healthy sensor. This combination is simulated using the state space model of a lateral flight control system in case of disturbance and under sensor fault scenario. Findings Using a dedicated observer scheme, the detection and time of sensor fault are correct, but the sensor fault isolation is evaluated incorrectly while the faulty sensor is isolated correctly using GOS. The simulation results show that the suggested approach works affectively for sensor faults with disturbance. Originality/value This paper proposes an integrated approach for aircraft fault-tolerant control. Under this framework, three units are designed, one is Kalman filter for filtering and the other is GOS for sensor fault isolation and another is fuzzy logic for reconfiguration. An integrated approach is sensitive to faults that have disturbances. The simulation results show the proposed integrated approach can be used for any linear system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gulay Unal

Purpose The purpose of this study is to present a new integrated structure for a fault tolerant aircraft control system because fault diagnosis of flight control systems is extremely important in obtaining healthy flight. An approach to detect and isolate aircraft sensor faults is proposed, and a new integrated structure for a fault tolerant aircraft control system is presented. Design/methodology/approach As disturbance and sensor faults are mixed together in a flight control system, it is difficult to isolate any fault from the disturbance. This paper proposes a robust unknown input observer for state estimation and fault detection as well as isolation using fuzzy logic. Findings The dedicated observer scheme (DOS) and generalized observer scheme (GOS) are used for fault detection and isolation in an observer-based approach. Using the DOS, it has been shown through simulation that sensor fault detection and isolation can be made, but here the threshold value must be well chosen; if not, the faulty sensor cannot be correctly isolated. On the other hand, the GOS is more usable and flexible than the DOS and allows isolation of faults more correctly and for a fuzzy logic-based controller to be used to realize fault isolation completely. Originality/value The fuzzy logic approach applied to the flight control system adds an important key for sensor fault isolation because it reduces the effect of false alarms and allows the identification of different kinds of sensor faults. The proposed approach can be used for similar systems.


Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 89 ◽  
Author(s):  
Tan Van Nguyen ◽  
Cheolkeun Ha

With the rapid development of computer science and information and communication technology (ICT), increasingly intelligent, and complex systems have been applied to industries as well as human life. Fault-tolerant control (FTC) has, therefore, become one of the most important topics attracting attention from both engineers and researchers to maintain system performances when faults occur. The ultimate goal of this study was to develop a sensor fault-tolerant control (SFTC) to enhance the robust position tracking control of a class of electro-hydraulic actuators called mini motion packages (MMPs), which are widely used for applications requiring large force-displacement ratios. First, a mathematical model of the MMP system is presented, which is then applied in the position control process of the MMP system. Here, a well-known proportional, integrated and derivative (PID) control algorithm is employed to ensure the positional response to the reference position. Second, an unknown input observer (UIO) is designed to estimate the state vector and sensor faults using a linear matrix inequality (LMI) optimization algorithm. Then an SFTC is used to deal with sensor faults of the MMP system. The SFTC is formed of the fault detection and the fault compensation with the goal of determining the location, time of occurrence, and magnitude of the faults in the fault signal compensation process. Finally, numerical simulations were run to demonstrate the superior performance of the proposed approach compared to traditional tracking control.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhifang Wang ◽  
Jianguo Yu ◽  
Shangjing Lin ◽  
Junguo Dong ◽  
Zheng Yu

Purpose The paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, this paper aims to propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system to distribute to solve the problem of control and communication failure at the same time. Design/methodology/approach In the paper, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the air-ground integrated wireless ad hoc network-integrated system. Findings The results show that the integrated system has good robustness and fault tolerance performance indicators for flight control and wireless signal transmission when confronted with external disturbances, internal actuator failures and wireless network associated failures and the flight control curve of the quadrotor unmanned aerial vehicle (UAV) is generally smooth and stable, even if it encounters external disturbances and actuator failures, its fault tolerance performance is very good. Then in the range of 400–800 m wireless communication distance, the success rate of wireless signal loop transmission is stable at 80%–100% and the performance is at least relatively improved by 158.823%. Originality/value This paper takes the air-ground integrated wireless ad hoc network-integrated system as the research object, based on the robust fault-tolerant control algorithm, the authors propose a distributed robust H∞ adaptive fault-tolerant control algorithm suitable for the system and through the Riccati equation and linear matrix inequation method, the designed distributed robust H∞ adaptive fault-tolerant controller further optimizes the fault suppression factor γ, so as to break through the limitation of only one Lyapunov matrix for different fault modes to distribute to solve the problem of control and communication failure at the same time.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1412
Author(s):  
Kyunghwan Choi ◽  
Kyung-Soo Kim ◽  
Seok-Kyoon Kim

This study seeks an advanced sensor fault diagnosis algorithm for DC/DC boost converters governed by nonlinear dynamics with parameter and load uncertainties. The proposed algorithm is designed with a combination of proportional-type state observer and disturbance observer (DOB) without integral actions. The convergence, performance recovery and offset-free properties of the proposed algorithm are derived by analyzing the estimation error dynamics. An optimization process to assign the optimal feedback gain for the state observer is also provided. Finally, a fault diagnosis criteria is introduced to identify the location and type of sensor faults online using normalized residuals. The experimental results verify the effectiveness of the suggested technique under variable operating conditions and three types of sensor faults using a prototype 3 kW DC/DC boost converter.


2019 ◽  
Vol 42 (2) ◽  
pp. 198-213
Author(s):  
Chaofang Hu ◽  
Zelong Zhang ◽  
Xianpeng Zhou ◽  
Na Wang

In this paper, a novel asymptotic fuzzy adaptive nonlinear fault tolerant control (FTC) scheme is presented for the under-actuated dynamics of a quadrotor unmanned aerial vehicle (UAV) subject to diverse sensor faults. The proposed FTC approach can deal with both additive sensor faults (bias, drift, loss of accuracy) and multiplicative sensor fault (loss of effectiveness). The overall dynamics is separated into position loop and attitude loop for FTC controllers design. Combining uncertain parameters and external disturbances, the four types of faults occurring in velocity sensors and Euler angle rate sensors are transformed equivalently into the unknown nonlinear function vectors and uncertain control gains. Fuzzy logic systems are used to approximate the lumped nonlinear functions, and adaptive parameters are estimated online. Nussbaum technique is introduced to deal with the unknown control gains. For both control loops, FTC controllers are designed via command filter-based backstepping approach, in which sliding mode control is introduced to establish asymptotic stability. All tracking error signals of the closed-loop control system are proved to converge to zero asymptotically. Finally, simulation comparisons with other methods demonstrate the effectiveness of the proposed FTC approach for quadrotor UAV with sensor faults.


2010 ◽  
Vol 39 ◽  
pp. 545-549
Author(s):  
Wen Shen Wang ◽  
Chen Huang

In order to ensure the safe and reliable operation of adaptive cruise control (ACC) system, the fault-tolerant control theory is used to design the feedback control for acc system and the control rule for sensor failure in the linear continuous system is described. On the basis of riccati equation, the design method and steps of fault-tolerant controller are given from the view of optimal control. By taking adaptive cruise control of a certain mini car as research object, the simulation calculation is carried out. By applying such fault-tolerant controller for the acc system, the simulation results show that the system has no sensitiveness to the sensor faults, and the method can satisfy the demand of fault-tolerant control.


2018 ◽  
Vol 90 (1) ◽  
pp. 210-218 ◽  
Author(s):  
Hidenobu Matsuki ◽  
Taishi Nishiyama ◽  
Yuya Omori ◽  
Shinji Suzuki ◽  
Kazuya Masui ◽  
...  

Purpose This paper aims to demonstrate the effectiveness of a fault-tolerant flight control method by using simple adaptive control (SAC) with PID controller. Design/methodology/approach Numerical simulations and flight tests are executed for pitch angle and roll angle control of research aircraft MuPAL-α under the following fault cases: sudden reduction in aileron effectiveness, sudden reduction in elevator effectiveness and loss of longitudinal static stability. Findings The simulations and flight tests reveal the effectiveness of the proposed SAC with PID controller as a fault-tolerant flight controller. Practical implications This research includes implications for the development of vehicles’ robustness. Originality/value This study proposes novel SAC-based flight controller and actually demonstrates the effectiveness by flight test.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Hao Shen

The problem of robust fault tolerant control for continuous-time fractional-order (FO) systems with interval parameters and sensor faults of0<α<2has been investigated. By establishing sensor fault model and state observer, an observer-based FO output feedback controller is developed such that the closed-loop FO system is asymptotically stable, not only when all sensor components are working well, but also in the presence of sensor components failures. Finally, numerical simulation examples are given to illustrate the application of the proposed design method.


Author(s):  
Jinwei Sun ◽  
JingYu Cong ◽  
Liang Gu ◽  
Mingming Dong

As the possibility of sensor faults in the vehicle chassis system is higher and influences the vehicle stability, this paper deals with active fault-tolerant control for vehicle with vertical and lateral dynamics. It focuses on the combined control of active suspension system and electronic stability control with sensor faults based on the interaction between vehicle with vertical and lateral dynamics. A 9-degree-of-freedom vehicle integrated model is adopted for accurate control. The aim of the controller is to improve riding comfort when the vehicle is driving straight and improve lateral stability when the vehicle is steering in the presence of external disturbances and sensor faults. First, an H∞-based method is introduced to reconstruct the sensor fault signals, and meanwhile, the method can also observe the unmeasured signals. Based on the reconstruction faults and observed signals, a gain scheduling controller is utilized to guarantee the performance of the integrated model under different driving conditions, and the steering input is chosen as the scheduling parameter. Three different conditions, step steering input, single lane change input, and sensor faults, are considered. The main contributions of this study are as follows: (1) an H∞-based observer was designed for sensor fault estimation of the vertical and lateral integrated model and (2) a gain scheduling controller was designed to improve the performance of the integrated system. Simulations results indicated that the active fault-tolerant controller can reconstruct sensor faults and observe the unmeasured states exactly, and the linear parameter varying framework–based gain scheduling controller ensures the system performance adaptively.


Sign in / Sign up

Export Citation Format

Share Document