Smart VRP-NLMS algorithm for estimation of power system frequency

Author(s):  
Seyed Reza Aali ◽  
Mohammad Reza Besmi ◽  
Mohammad Hosein Kazemi

Purpose The purpose of this paper is to study variation regularization with a positive sequence extraction-normalized least mean square (VRP-NLMS) algorithm for frequency estimation in a three-phase electrical distribution system. A simulation test is provided to validate the performance and convergence rate of the proposed estimation algorithm. Design/methodology/approach Least mean square (LMS) algorithms for frequency estimation encounter problems when voltage contains unbalance, sags and harmonic distortion. The convergence rate of the LMS algorithm is sensitive to the adjustment of the step-size parameter used in the update equation. This paper proposes VRP-NLMS algorithm for frequency estimation in a power system. Regularization parameter is variable in the NLMS algorithm to adjust step-size parameter. Delayed signal cancellation (DSC) operator suppresses harmonics and negative sequence component of the voltage vector in a two-phase Î ± β plane. The DSC part is placed in front of the NLMS algorithm as a pre-filter and a positive sequence of the grid voltage is extracted. Findings By adapting of the step-size parameter, speed and accuracy of the LMS algorithm are improved. The DSC operator is augmented to the NLMS algorithm for more improvement of the performance of this adaptive filter. Simulation results validate that the proposed VRP-NLMS algorithm has a less misalignment of performance with more convergence rate. Originality/value This paper is a theoretical support to simulated system performance.

Author(s):  
M. Yasin ◽  
Pervez Akhtar

Purpose – The purpose of this paper is to analyze the convergence performance of Bessel beamformer, based on the design steps of least mean square (LMS) algorithm, can be named as Bessel LMS (BLMS) algorithm. Its performance is compared in adaptive environment with LMS in terms of two important performance parameters, namely; convergence and mean square error. The proposed BLMS algorithm is implemented on digital signal processor along with antenna array to make it smart in wireless sensor networks. Design/methodology/approach – Convergence analysis is theoretically developed and verified through MatLab Software. Findings – Theoretical model is verified through simulation and its results are shown in the provided table. Originality/value – The theoretical model can obtain validation from well-known result of Wiener filter theory through principle of orthogonality.


2018 ◽  
Vol 38 (1) ◽  
pp. 187-198 ◽  
Author(s):  
Yubin Fang ◽  
Xiaojin Zhu ◽  
Zhiyuan Gao ◽  
Jiaming Hu ◽  
Jian Wu

The step size of least mean square (LMS) algorithm is significant for its performance. To be specific, small step size can get small excess mean square error but results in slow convergence. However, large step size may cause instability. Many variable step size least mean square (VSSLMS) algorithms have been developed to enhance the control performance. In this paper, a new VSSLMS was proposed based on Kwong’s algorithm to evaluate the robustness. The approximate analysis of dynamic and steady-state performance of this developed VSSLMS algorithm was given. An active vibration control system of piezoelectric cantilever beam was established to verify the performance of the VSSLMS algorithms. By comparing with the current VSSLMS algorithms, the proposed method has better performance in active vibration control applications.


2018 ◽  
Vol 7 (2.17) ◽  
pp. 74 ◽  
Author(s):  
Asiya Sulthana ◽  
Md Zia Ur Rahman

An increasing number of elderly­­­­ and disabled people urge the need for a health care monitoring system which has the capabilities for analyzing patient health care data to avoid preventable deaths. Medical Telemetry is becoming a key tool in assisting patients living remotely where a “Real-time Remote Critical Health Care Monitoring System” (RRCHCMS) can be utilized for the same. The RRCHCMS is capable of receiving and transmitting data from a remote location to a location that has the capability to diagnose the data and affect decision making and further providing assistance to the patient. During the cardiac analysis, several artifacts solidly affect the ST segment, humiliate the signal quality, frequency resolution, and results in large amplitude signals in ECG that simulate PQRST waveform and cover up the miniature features that are useful for clinical monitoring and diagnosis. In this paper, several leaky based adaptive filter structures for cardiac signal improvement are discussed. The Circular Leaky Least Mean Square (CLLMS) algorithm being the steepest drop strategy for dropping the mean squared error gives a better result in comparison with the Least Mean Square (LMS) algorithm. To enlarge the filtering ability some variants of LMS, Normalized Least Mean Square (NLMS), CLLMS, Variable Step Size CLLMS (VSS-CLLMS) algorithms are used in both time domain (TD) and frequency domain (FD). At last, we applied this algorithm on cardiac signals occurred due to MIT-BIH database. The performance of CLLMS algorithm is better compared to LLMS counterparts in conditions of Signal to Noise Ratio Improvement (SNRI), Excess Mean Square Error (EMSE) and Misadjustment (MSD). When compared to all other algorithms VSS-CLLMS gives superior SNRI. These values are 13.5616dB and 13.7592dB for Baseline Wander (BW) and Muscle Artifact (MA) removal.  


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 65
Author(s):  
Amritha Kodakkal ◽  
Rajagopal Veramalla ◽  
Narasimha Raju Kuthuri ◽  
Surender Reddy Salkuti

A power generating system should be able to generate and feed quality power to the loads which are connected to it. This paper suggests a very efficient controlling technique, supported by an effective optimization method, for the control of voltage and frequency of the electrical output of an isolated wind power harnessing unit. The wind power unit is modelled using MATLAB/SIMULINK. The Leaky least mean square algorithm with a step size is used by the proposed controller. The Least Mean Square (LMS) algorithm is of adaptive type, which works on the online modification of the weights. LMS algorithm tunes the filter coefficients such that the mean square value of the error is the least. This avoids the use of a low pass filter to clean the voltage and current signals which makes the algorithm simpler. An adaptive algorithm which is generally used in signal processing is applied in power system applications and the process is further simplified by using optimization techniques. That makes the proposed method very unique. Normalized LMS algorithm suffers from drift problem. The Leaky factor is included to solve the drift in the parameters which is considered as a disadvantage in the normalized LMS algorithm. The selection of suitable values of leaky factor and the step size will help in improving the speed of convergence, reducing the steady-state error and improving the stability of the system. In this study, the leaky factor, step size and controller gains are optimized by using optimization techniques. The optimization has made the process of controller tuning very easy, which otherwise was carried out by the trial-and-error method. Different techniques were used for the optimization and on result comparison, the Antlion algorithm is found to be the most effective. The controller efficiency is tested for loads that are linear and nonlinear and for varying wind speeds. It is found that the controller is very efficient in maintaining the system parameters under normal and faulty conditions. The simulated results are validated experimentally by using dSpace 1104. The laboratory results further confirm the efficiency of the proposed controller.


Author(s):  
Hamid Reza Moradi ◽  
Akram Zardadi

In this paper, we propose the set-membership quaternion normalized least-mean-square (SM-QNLMS) algorithm. For this purpose, first, we review the quaternion least-mean-square (QLMS) algorithm, then go into the quaternion normalized least-mean-square (QNLMS) algorithm. By having the QNLMS algorithm, we propose the SM-QNLMS algorithm in order to reduce the update rate of the QNLMS algorithm and avoid updating the system parameters when there is not enough innovation in upcoming data. Moreover, the SM-QNLMS algorithm, thanks to the time-varying step-size, has higher convergence rate as compared to the QNLMS algorithm. Finally, the proposed algorithm is utilized in wind profile prediction and quaternionic adaptive beamforming. The simulation results demonstrate that the SM-QNLMS algorithm outperforms the QNLMS algorithm and it has higher convergence speed and lower update rate.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 301
Author(s):  
Zhihua Yu ◽  
Yunfei Cai ◽  
Daili Mo

Adaptive filtering has the advantages of real-time processing, small computational complexity, and good adaptability and robustness. It has been widely used in communication, navigation, signal processing, optical fiber sensing, and other fields. In this paper, by adding an interferometer with the same parameters as the signal interferometer as the reference channel, the sensing signal of the interferometric fiber-optic hydrophone is denoised by two adaptive filtering schemes based on the least mean square (LMS) algorithm and the normalized least mean square (NLMS) algorithm respectively. The results show that the LMS algorithm is superior to the NLMS algorithm in reducing total harmonic distortion, improving the signal-to-noise ratio and filtering effect.


Author(s):  
Ana Jovanović ◽  
Luka Lazović ◽  
Vesna Rubežić

Purpose The purpose of this paper is to use the proposed algorithm for the fast adaptation of the antenna array radiation pattern on the particular scenario of the incoming signals. The fitness function to be minimized includes the precise estimation of signals’ arrival angles, setting the deep nulls in the directions of the interfering signal, the reduction of the main lobe’s width and the reduction of side lobes. Design/methodology/approach Unlike conventional adaptive algorithms, the proposed algorithm allows synthesis of radiation patterns in the case of a larger number of incident desired and interfering signals. The proposed method also reduces the width of the dead zone. Findings In this paper a comparison of the results obtained from the chaotic beamforming algorithm with the results obtained by using the Sequential Quadratic Programming method is presented. Originality/value The chaotic beamforming algorithm is proposed here. It is based on the optimization of the least mean square and on the variable step-size least mean square algorithms, using chaos theory for synthesis of the radiation pattern of the linear antenna array.


2021 ◽  
Vol 11 (12) ◽  
pp. 5618
Author(s):  
Pedro Ramos Lorente ◽  
Raúl Martín Ferrer ◽  
Fernando Arranz Martínez ◽  
Guillermo Palacios-Navarro

Partial updates (PU) of adaptive filters have been successfully applied in different contexts to lower the computational costs of many control systems. In a PU adaptive algorithm, only a fraction of the coefficients is updated per iteration. Particularly, this idea has been proved as a valid strategy in the active control of periodic noise consisting of a sum of harmonics. The convergence analysis carried out here is based on the periodic nature of the input signal, which makes it possible to formulate the adaptive process with a matrix-based approach, the periodic least-mean-square (P-LMS) algorithm In this paper, we obtain the upper bound that limits the step-size parameter of the sequential PU P-LMS algorithm and compare it to the bound of the full-update P-LMS algorithm. Thus, the limiting value for the step-size parameter is expressed in terms of the step-size gain of the PU algorithm. This gain in step-size is the quotient between the upper bounds ensuring convergence in the following two scenarios: first, when PU are carried out and, second, when every coefficient is updated during every cycle. This step-size gain gives the factor by which the step-size can be multiplied so as to compensate for the convergence speed reduction of the sequential PU algorithm, which is an inherently slower strategy. Results are compared with previous results based on the standard sequential PU LMS formulation. Frequency-dependent notches in the step-size gain are not present with the matrix-based formulation of the P-LMS. Simulated results confirm the expected behavior.


Sign in / Sign up

Export Citation Format

Share Document