Lattice Boltzmann method to simulate convection heat transfer in a microchannel under heat flux

2019 ◽  
Vol 30 (6) ◽  
pp. 3371-3398 ◽  
Author(s):  
Masoud Mozaffari ◽  
Annunziata D’Orazio ◽  
Arash Karimipour ◽  
Ali Abdollahi ◽  
Mohammad Reza Safaei

Purpose The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux. Design/methodology/approach Develop the thermal lattice Boltzmann method based on double population of hydrodynamic and thermal distribution functions. Findings The buoyancy forces, caused by gravity, can change the hydrodynamic properties of the flow. As a result, the gravity term was included in the Boltzmann equation as an external force, and the equations were rewritten under new conditions. Originality/value To the best of the authors’ knowledge, the current study is the first attempt to investigate mixed-convection heat transfer in an inclined microchannel in a slip flow regime.

2019 ◽  
Vol 29 (10) ◽  
pp. 3659-3684 ◽  
Author(s):  
Rasul Mohebbi ◽  
Mohsen Izadi ◽  
Nor Azwadi Che Sidik ◽  
Gholamhassan Najafi

Purpose This paper aims to study the natural convection of a nanofluid inside a cavity which contains obstacles using lattice Boltzmann method (LBM). The results have focused mainly on various parameters such as number and aspect ratio of roughness elements and different nanoparticle volume fraction. The isotherms and streamlines are presented to describe the hydrodynamics and thermal behaviors of the nanofluid flow throughout the enclosure. Design/methodology/approach The methodology of this paper consists of mathematical model, statement of the problem, nanofluid thermophysical properties, lattice Boltzmann method, LBM for fluid flow, LBM for heat transfer, numerical strategy, boundary conditions, Nusselt (Nu) number calculation, code validation and grid independence. Findings Natural convection heat transfers of a nanofluid inside cavities with and without rough elements have been studied. Lattice Boltzmann technique has been used as numerical approach. The results showed that at higher Rayleigh number (Ra = 106), there are denser streamlines near the left (source) and right wall (sink) which results in better cooling and enhances convective heat rejection to the heat sink. After a distinctive aspect ratio of rough elements (A = 0.1), change in streamline pattern which arises from increasing of aspect ratio does not have an important effect on isotherms. Results indicate that for lower Rayleigh number (Ra = 103), no variation in average Nu is observed with increasing in number of roughness, while for higher one (Ra = 106) average Nu decreases from N = 0 (smooth cavity) up to N = 4 and then remains constant (N = 6). Originality/value Currently, no argumentative and comprehensive extraction can be concluded without fully understanding the role of different arrangement of roughness. Some geometrical parameters such as aspect ratio, number and position of rough elements have been considered. Also, the effect of nanoparticle concentration was studied at different Ra number. Briefly, using LBM, this paper aims to investigate the natural convection of a nanofluid flow on the thermal and hydrodynamics parameters in the presence of rough element with various arrangements.


Sign in / Sign up

Export Citation Format

Share Document