scholarly journals A method for estimating scheduled and manual override heating behaviour and settings from measurements in low energy UK homes

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Adorkor Bruce-Konuah ◽  
Rory V. Jones ◽  
Alba Fuertes

PurposeThe purpose of this paper is to present a methodology for estimating scheduled and manual override heating events and heating settings from indoor air temperature and gas use measurements in UK homes.Design/methodology/approachLiving room air temperature and gas use data were measured in ten UK homes built to low energy standards. The temperature measurements are used to establish whether the central heating system is turned on or off and to estimate the heating setpoint used. The estimated heating periods are verified using the homes' average daily gas consumption profiles.FindingsUsing this method, the average number of heating periods per day was 2.2 (SD = 0.8) on weekdays and 2.7 (SD = 0.5) on weekends. The weekday mean heating duration was 8.8 h and for weekends, it was 9.8 h. Manual overrides of the settings occurred in all the dwellings and added an average of 2.4 h and 1.5 h to the heating duration on weekdays and weekends respectively. The mean estimated setpoint temperatures were 21.2 and 21.4°C on weekdays and weekends respectively.Research limitations/implicationsManual overrides of heating behaviours have only previously been assessed by questionnaire survey. This paper demonstrates an alternative method to identifying these manual override events and responds to a key gap in the current body of research that little is currently reported on the frequency and duration of manual heating overrides in UK homes.Practical implicationsThe results could be used to better inform the assumptions of space heating behaviour used in energy models in order to more accurately predict the space heating energy demands of dwellings.Originality/valueManual overrides of heating behaviours have only previously been assessed by questionnaire survey. This paper demonstrates an alternative method to identifying these manual override events and responds to a key gap in the current body of research that little is currently reported on the frequency and duration of manual heating overrides in UK homes.

2019 ◽  
Vol 111 ◽  
pp. 04002 ◽  
Author(s):  
Kyriaki Foteinaki ◽  
Rongling Li ◽  
Alfred Heller ◽  
Morten Herget Christensen ◽  
Carsten Rode

This study analysed the dynamic thermal response of a low-energy building using measurement data from an apartment block in Copenhagen, Denmark. Measurements were collected during February and July 2018 on space heating energy use, set-points, room air temperature and temperature from sensors integrated inside concrete elements, i.e. internal walls and ceiling, at different heights and depths. The heating system was controlled by the occupants. During February, there were unusually high set-points for some days and a regular heating pattern for some other days. Overheating was observed during July. A considerable effect of solar gain was observed both during winter and summer months. The room air temperature fluctuations were observed at a certain extent inside the concrete elements; higher in the non-load-bearing internal wall, followed by the load-bearing internal wall and lastly by the ceiling. The phenomenon of delayed thermal response of the concrete elements was observed. All internal concrete masses examined may be regarded as active elements and can contribute to the physically available heat storage potential of the building. The study provides deep insight into the thermal response of concrete elements in low-energy residential buildings, which should be considered when planning a flexible space heating energy use.


2017 ◽  
Vol 17 (3) ◽  
pp. 262-272
Author(s):  
Maria Burke

Purpose The purpose of this paper is to outline an early adopter “low energy” domestic dwelling, one of the social houses built by a collaboration between a university, the local council. The origins of this project are from the early days of interest in sustainable housing, the 1970s. The dwellings were innovative and built to what became known as “the Salford design” which performed to unusual specifications, using approximately 75 per cent less energy than the UK average for space heating and over 40 per cent less than for houses built to what were then the standard building regulations. Design/methodology/approach A qualitative and interpretative stance was deemed to be the most appropriate. Within that lens, interviews were chosen as the primary research instrument. Findings A marked feature of the results is the variation in energy consumption by different households. A Salford-designed house could be habitable throughout the year without any space heating at all, comfortable at 10 per cent and very comfortable at 25 per cent of normal consumption. Originality/value As there continues to be interest and commitment to reducing energy – not just from the United Kingdom but also on a worldwide scale – the United Nations Conference of the Parties known as COP 22 (2016) met in Morocco to take forward many of the initiatives outlined in the Paris Agreement 2015. It is of interest, then, that the latest set of interviews showed that the houses built to the innovative and original 1970s’ Salford design principles, protected by highly insulated well-sealed envelopes, are even presently functioning at a relatively low energy threshold.


2019 ◽  
Vol 40 (6) ◽  
pp. 714-731
Author(s):  
Christian Brembilla ◽  
Ronny Renman ◽  
Mohsen Soleimani-Mohseni ◽  
Ronny Östin ◽  
Thomas Olofsson

In this study efficiency factors measure the thermal energy performance for space heating. This study deals with the influence of control strategies on the efficiency factors of space heating and its distribution system. An adaptive control is developed and applied to two types of heating curves (linear and non-linear) for a low-energy building equipped with renewable energy sources. The building is modelled with a hybrid approach (law-driven + data-driven model). The model of the floor heating is calibrated and validated by assessing the uncertainty bands for flow temperatures and mass flow rate. Benefits and drawbacks of linear and non-linear heating curves are highlighted to illustrate their impact on space heating thermodynamic behaviour and on the efficiency factors of the space heating system. Practical application: The study reveals that applying commercial building energy simulation software is worthwhile to determine reliable energy performance predictions. Massless building models are not capable of simulating the thermodynamic response of a building subjected to different control strategies. In particular, the application of different heating curves (linear and non-linear) to massless building models leaves the amount of mass flow rate delivered to the space heating unchanged when the building is subjected to sharp variations of the outdoor temperature.


2019 ◽  
Vol 37 (3) ◽  
pp. 344-360 ◽  
Author(s):  
Yingchun Ji ◽  
Angela Lee ◽  
William Swan

Purpose There is a clear consensus that improving energy efficiency of existing housing stock is necessary to meet the UK’s legally binding carbon emission targets by 2050. The purpose of this paper is to assess the energy saving potentials from building retrofit using an end-terrace house, similar houses represent about 30 per cent of the existing building stock in the UK. Design/methodology/approach The Salford Energy House – a unique pre-1919 Victorian end-terrace house built within an environmental chamber – was used. Retrofit modelling analysis was carried out using IESVE – a dynamic thermal simulation tool. The retrofitted model was also evaluated using future projected climate data (CIBSE latest release) to examine energy demands and overheating. Findings Findings show that improving building fabric thermal characteristics can reduce space heating demands substantially. Heating modes, set point preferences and infiltration level all have strong impact on heating demands. Space heating demand savings can be as much as 77 per cent when the property facades were upgraded to the similar requirements of Passivhaus standards. The research implicates that, for dwelling retrofit practices, a whole house holistic approach should be the preferred option to improve energy efficiency. With future climate scenarios where temperatures are potentially elevated, the heating demands can be potentially reduced as much as 27 per cent. Practical implications The likelihood of overheating in dwellings after a deep retrofit due to future elevated temperatures becomes apparent. Therefore, mitigation of overheating risk becomes a necessity for future domestic housing stock retrofit planning and policy making. Originality/value The research presented in this paper highlights the effectiveness of various retrofit measures individually as well as holistically, also the implications on energy demands and the likelihood of overheating in dwellings under future climate scenarios.


2013 ◽  
Vol 649 ◽  
pp. 129-132 ◽  
Author(s):  
Radoslav Ponechal ◽  
Silvia Baďurová

The solid fuel heaters are popular in Slovakia again, where about 50% of new freestanding homes have one. The classic fireplace, with a blazing fire open to the room as traditional symbol of comfort and security becomes with better building thermal insulation a primary rather than an occasional indulgence heat source. This paper reports the results of field measurement and simulation investigating the thermal comfort criteria in occupied space with fireplace heating system. The field study was performed in a small furnished living-room. The indoor surface temperatures were captured with infrared camera and the mean radiant temperatures were calculated by the ESP-r simulation tool. Thermal comfort prediction maps (PPD and PMV index) are presented to describe range of occupant comfort levels with mean air temperature, air velocity and clothing level variations. It was found that this system provide full area improved thermal climate only with high air temperature level. The study was limited to the case with no vertical air temperature distribution.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1224
Author(s):  
Alexander Peikos ◽  
Carole Binsfeld

The aim of this paper is to determine a thermally comfortable air temperature in an automated living room. This calculated temperature should serve as input for a user-specific and dynamic heating control in an automated living space. In addition to the usual physical factors (air temperature, humidity, air velocity and radiation temperature), individual clothing and activity should be taken into account. The calculation of such a temperature is based on different methods and indices which are usually used for the evaluation of the thermal comfort. The thermal insulation of the worn clothing is determined by 3 different methods. These is a radio frequency identification system, a thermal imaging camera system and a theoretical calculation of the clothing likely to be worn based on temperature data. The activity performed is only taken into account indirectly through the generated heart rate. All these methods are ultimately very well suited for use in temperature regulation in an automated home, but require further research and extensive evaluation.


2019 ◽  
Author(s):  
Naja Aqilah Hisham ◽  
Sheikh Ahmad Zaki ◽  
Aya Hagishima ◽  
Nelidya Md Yusoff

Load profile of household air-conditioning (AC) and total electricity consumption is essential to increase the stability of the energy demand on the grid. Therefore, field measurements on time series data of total and AC electricity consumption from 20 households were conducted from March 2016 to August 2017. The questionnaire survey was carried out simultaneously to grasp the profile of each family. The average total daily and AC consumption were 14.5 kWh/day and 3.9 kWh/day, respectively. The average hourly electricity consumption for total was 0.6 kWh/hour, meanwhile for AC was 0.2 kWh/hour. About 20% of the total peak demand was contributed by the consumption of AC. The indoor air temperature was measured in the bedroom (BR) when AC was switched ON and OFF with an average of 27 ∘C and 29 ∘C, respectively. However, the indoor air temperature in the living room (LR) was 2∘C and 1∘C higher if compared to BR for both conditions. Based on the questionnaire survey, 92% of the occupants preferred a temperature setting below than the level recommended by the Malaysian standard i.e., 24 ∘C. These results might be beneficial to understand the occupant behavior of electricity demand in Malaysia for designing smart grid energy systems in the future.


Kybernetes ◽  
2019 ◽  
Vol 49 (4) ◽  
pp. 1083-1102
Author(s):  
Georgios N. Aretoulis ◽  
Jason Papathanasiou ◽  
Fani Antoniou

Purpose This paper aims to rank and identify the most efficient project managers (PMs) based on personality traits, using Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) methodology. Design/methodology/approach The proposed methodology relies on the five personality traits. These were used as the selection criteria. A questionnaire survey among 82 experienced engineers was used to estimate the required weights per personality trait. A second two-part questionnaire survey aimed at recording the PMs profile and assess the performance of personality traits per PM. PMs with the most years of experience are selected to be ranked through Visual PROMETHEE. Findings The findings suggest that a competent PM is the one that scores low on the “Neuroticism” trait and high especially on the “Conscientiousness” trait. Research limitations/implications The research applied a psychometric test specifically designed for Greek people. Furthermore, the proposed methodology is based on the personality characteristics to rank the PMs and does not consider the technical skills. Furthermore, the type of project is not considered in the process of ranking PMs. Practical implications The findings could contribute in the selection of the best PM that maximizes the project team’s performance. Social implications Improved project team communication and collaboration leading to improved project performance through better communication and collaboration. This is an additional benefit for the society, especially in the delivery of public infrastructure projects. A lot of public infrastructure projects deviate largely as far as cost and schedule is concerned and this is an additional burden for public and society. Proper project management through efficient PMs would save people’s money and time. Originality/value Identification of the best PMbased on a combination of multicriteria decision-making and psychometric tests, which focus on personality traits.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3350
Author(s):  
Theofanis Benakopoulos ◽  
William Vergo ◽  
Michele Tunzi ◽  
Robbe Salenbien ◽  
Svend Svendsen

The operation of typical domestic hot water (DHW) systems with a storage tank and circulation loop, according to the regulations for hygiene and comfort, results in a significant heat demand at high operating temperatures that leads to high return temperatures to the district heating system. This article presents the potential for the low-temperature operation of new DHW solutions based on energy balance calculations and some tests in real buildings. The main results are three recommended solutions depending on combinations of the following three criteria: district heating supply temperature, relative circulation heat loss due to the use of hot water, and the existence of a low-temperature space heating system. The first solution, based on a heating power limitation in DHW tanks, with a safety functionality, may secure the required DHW temperature at all times, resulting in the limited heating power of the tank, extended reheating periods, and a DH return temperature of below 30 °C. The second solution, based on the redirection of the return flow from the DHW system to the low-temperature space heating system, can cool the return temperature to the level of the space heating system return temperature below 35 °C. The third solution, based on the use of a micro-booster heat pump system, can deliver circulation heat loss and result in a low return temperature below 35 °C. These solutions can help in the transition to low-temperature district heating.


Sign in / Sign up

Export Citation Format

Share Document