Agri-pellets as alternative fuels for coal-fired power plants in Canada

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramin Azargohar ◽  
Ajay Dalai ◽  
Ebrahim Hassanpour ◽  
Saeed Moshiri

Purpose Lignite coal-fired power plants are the main electricity generators in the province of Saskatchewan, Canada. Although burning lignite coal to generate power is economical, it produces significant greenhouse gases making it a big challenge to Canada’s international commitment on emission reduction. However, abundant agricultural crops and sawdust produced in Saskatchewan put the province in a good position to produce and use agri-pellets as an alternative fuel to generate electricity. This study aims to conduct an economic and environmental analysis of the replacement of lignite coal by agri-pellets as the fuel for Saskatchewan’s coal-fired power plants. Design/methodology/approach The study estimates the economic and environmental costs and benefits of two alternative fuels for power plants. The economic analysis is based on the pellet production and transportation costs from farms to production sites and from the production sites to power plants. In the production process, biomass precursors are densified with and without additives to produce fuel agri-pellets with appropriate mechanical durability and high heating value per volume unit. The environmental analysis involves estimation of greenhouse gas emissions and their social costs for lignite coal and different types of agri-pellets under different scenarios for pellet production and transportation. Findings The results show that although the total cost of electricity is lower for coal than agri-pellets, the gap shrinks when social costs and specifically a carbon price of $50/tonne are included in the model. The cost of electricity in lignite coal-fired power plants would also be on par with agri-pellets-fired power plants if the carbon price is between U$68 and $78 per tonne depending on the power plant locations. Therefore, a transition from coal to agri-pellet fuels is feasible if a high-enough price is assigned to carbon. The method and the results can be generalized to other places with similar conditions. Research limitations/implications There are a few caveats in this study as follows. First, the fixed costs associated with the transformation of the existing coal-fired power plants to pellet-fired plants are not considered. Second, the technological progress in the transportation sector, which would favor the net benefits of using pellets versus coal, is not included in the analysis. Finally, the study does not address the possible political challenges facing the transition in the context of the Canadian federal system. Practical implications The study results indicate that the current carbon price of $50 per tonne is not sufficient to make the agri-pellets a feasible source of alternative energy in Saskatchewan. However, if carbon pricing continues to rise by $15 annually starting in 2022, as announced, a transition from coal to agri-pellets will be economically feasible. Social implications Canada is committed to reduce its emission according to the Paris agreement, and therefore, needs to have a concrete policy to find alternative energy sources for its coal-fired power plants. This study examines the challenges and benefits of such transition using the existing agri-pellet resources in Saskatchewan, a province with abundant agricultural residues and coal-fired power plants. The findings indicate that a significant emission reduction can be achieved by using agri-pellets instead of coal to produce electricity. The study also implies that the transition to renewable energy is economical when social costs of carbon (carbon tax) is included in the analysis. Originality/value As far as the authors know, this is the first study providing a socio-economic analysis for a possible transition from the coal-fired power plants to a more clean and sustainable renewable energy source in one of the highest carbon dioxide (CO2) producer provinces in Canada: Saskatchewan. The study builds upon the technical production of three agri-pellets (oat hull, canola hull and sawdust) and estimates the economic and environmental costs of alternative fuels under different scenarios.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sa’d Shannak ◽  
Artem Malov

Purpose This paper aims to discuss opportunities for pairing the carbon dioxide (CO2) points of supply from stationary sources such as power plants, steel and cement production, coal to liquid plants and refineries, with potential oil reservoirs in China. Design/methodology/approach This study builds a linear optimization model to analyze the tradeoffs in developing CO2-enhance oil recovery (EOR) projects in China for a range of policy options to match points of supply with the points of demand (oil fields). The model works on optimizing CO2 application costs by meeting four principal components; CO2 storage, CO2 capture, transport costs and additional oil recovery. Findings This study reveals new opportunities and economic sources to feed CO2-EOR applications and offers reasonable options to supply CO2 for potential points of demand. Furthermore, power plants and coal to liquid industries had the most significant and economic contributions to potential CO2-EOR projects in China. Total annual emission reduction is expected to be 10% (based on 10 Gton annual emissions). The emission reductions and potential CO2 storage from the different industries as follow; 94% from power plants, 4% from biofuel and 2% from coal to liquid plants. Social implications Carbon capture and storage (CCS) is one practice aiming to reduce the amounts of anthropogenic emissions of carbon dioxide emitted into the atmosphere and reduce the related social costs. However, given the relatively high cost associated with this practice, coupling it with EOR could offer a significant financial incentive to facilitate the development of CCS projects and meet climate change objectives. Originality/value The model used in this study can be straightforwardly adapted to any geographic location where industry and policymakers are looking to simultaneously reduce CO2 emissions while increasing hydrocarbon recovery. The model is highly adaptable to local values in the parameters considered and to include additional local considerations such as geographic variation in capture costs, taxes and premiums to be placed on CO2 capture in so-called “non-attainment zones” where pollution capture make could make a project politically and economically viable. Regardless of how and where this model is applied, it is apparent that CO2 from industrial sources has substantial potential value as a coproduct that offsets its sequestration costs using existing, commercially available CO2-EOR technology, once sources and sinks are optimally paired.


Author(s):  
Александр Григорьевич Комков ◽  
Александр Константинович Сокольский

В статье рассмотрено современное состояние энергоснабжения и перспективы развития альтернативных источников энергии на территории Крайнего Севера. Отмечено, что несмотря на острую потребность во внедрении возобновляемых источников энергии, установленные мощности всех ветряных и солнечных электростанций в регионе не превышают 7-8 МВт. Также в работе рассчитаны технический и экономический потенциал ветровой энергии региона, на основании которых подобрана наиболее эффективная установка. The article discusses the current state of energy supply and the prospects for the development of alternative energy sources in the Far North. It is noted that despite the urgent need for the introduction of renewable energy sources, the installed capacities of all wind and solar power plants in the region do not exceed 7-8 MW. Also, the technical and economic potential of the region’s wind energy was calculated based on which the most efficient installation was selected.


2021 ◽  
Vol 13 (9) ◽  
pp. 4896
Author(s):  
Jianguo Zhou ◽  
Dongfeng Chen

Effective carbon pricing policies have become an effective tool for many countries to encourage emission reduction. An accurate carbon price prediction model is helpful for the implementation of energy conservation and emission reduction policies and the decision-making of governments and investors. However, it is difficult for a single prediction model to achieve high prediction accuracy because of the high complexity of the carbon price series. Many studies have proved the nonlinear characteristics of carbon trading prices, but there are very few studies on the chaotic nature of carbon price series. As a consequence, this paper proposes an innovative hybrid model for carbon price prediction. A decomposition-reconstruction-prediction-integration scheme is designed to predict carbon prices. Firstly, several intrinsic mode functions (IMFs) and one residue were obtained from the raw data decomposed by ICEEMDAN. Next, the decomposed subsection is reconstructed into a new sequence according to the calculation results by the Lempel-Ziv complexity algorithm. Then, considering the chaotic characteristics of sequence, the input variables of the models are determined through the phase space reconstruction (PSR) algorithm combined with the partial autocorrelation function (PACF). Finally, the Sparrow search algorithm (SSA) is introduced to optimize the extreme learning machine (ELM) model, which is applied in the carbon price prediction for the purpose of verifying the validity of the proposed combination model, which is applied to the pilots of Hubei, Beijing, and Guangdong. The empirical results show that the combination model outperformed the 13 other models in predicting accuracy, speed, and stability. The decomposition-reconstruction-prediction-integration strategy is a method for predicting the carbon price efficiently.


2021 ◽  
Vol 13 (2) ◽  
pp. 642
Author(s):  
Shuangxi Zhou ◽  
Zhenzhen Guo ◽  
Yang Ding ◽  
Jingliang Dong ◽  
Jianming Le ◽  
...  

Buildings consume many resources and generate greenhouse gases during construction. One of the main sources of greenhouse gases is carbon emission associated with buildings. This research is based on the computing rule of carbon emission at the materialization stage. By taking the features of green construction into consideration, quantitative analysis on construction carbon emission was undertaken via Life Cycle Assessment (LCA). Making use of Vensim (a system dynamics software package), we analyzed the amount of carbon emission at the materialization stage and determined the major subsystems affecting the carbon emission, then took into comprehensive consideration the differences of each subsystem’s carbon emission under different construction technologies. Under the mechanism of carbon trade at the materialization stage, the total price of carbon trades remains unchanged, while the trading price of each subsystem is adjusted. Under these conditions, a coefficient for step-wise increases in carbon price was proposed. By establishing such a system of gradient prices, construction companies are encouraged to adopt high-efficiency emission reduction technologies. Meanwhile, the system also provides a reference for the formulation of price-based policies about buildings’ carbon trading, and accelerates the process of energy conservation and emission reduction in China and the world at large.


2012 ◽  
Vol 562-564 ◽  
pp. 1772-1775
Author(s):  
Shakeel Akram ◽  
Farhan Hameed Malik ◽  
Rui Jin Liao ◽  
Bin Liu ◽  
Tariq Nazir

Due to the complex design and high costs of production, solar thermal systems have fallen behind in the world of alternative energy systems. Different mechanisms are applied to increase the efficiency of the solar collectors and to reduce the cost. Solar tracking system is the most appropriate technology to increase the efficiency of solar collectors as well as solar power plants by tracking the sun timely. In order to maximize the efficiency of collectors, one needs to keep the reflecting surface of parabolic trough collectors perpendicular to the sun rays. For this purpose microcontroller based real time sun tracker is designed which is controlled by an intelligent algorithm using shadow technique. The aim of the research project is to test the solar-to-thermal energy efficiency by tracking parabolic trough collector (PTC). The energy efficiency is determined by measuring the temperature rise of working fluid as it flows through the receiver of the collector when it is properly focused. The design tracker is also simulated to check its accuracy. The main purpose to design this embedded system is to increase the efficiency and reliability of solar plants by reducing size, complexity and cost of product.


2012 ◽  
Vol 2 (8) ◽  
pp. 1-9
Author(s):  
Saroj Koul

Subject area Operations and human resourcing. Study level/applicability This case study is intended for use in graduate, executive level management and doctoral programs. The case study illustrates a combined IT and HR driven participative management control system in a flexible organization structure. It is intended for a class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Case overview The case describes the situation of managing unskilled workforces (≥14,000 workers) during the construction phase of the 4 × 250MW power plants both for purposes of turnout as well as due compensation, in the event of an accident. The approved labour forces appointed for 45 × 8 h. Man-days after a rigorous fitness test and approvals of the safety officer are allocated housing and other necessary amenities and a commensurate compensation system. Expected learning outcomes These include: illustrating typical organizational responsibility structure at a construction site of a large power plant; illustrating the planning and administrative control mechanism in implementing strategy at a construction site of a large power plant; offering students the opportunity to understand and view a typical operational (project) structure; allowing students to speculate adaptations in the wake of an ever-changing business and company environment; and providing an opportunity to introduce a power scenario in India, Indian labour laws and radio frequency identification technology and to relate this to the case in context. Supplementary materials Teaching notes are available; please consult your librarian for access.


Significance Hichilema's surprise win came despite extensive voter suppression and intimidation attributed to former President Edgar Lungu and the ruling Patriotic Front (PF) against supporters of Hichilema’s United Party for National Development (UPND). Impacts The broad scope of Hichilema’s reform programme will pose difficulties of prioritisation, particularly within current fiscal constraints. Higher copper prices may mitigate some of the social costs associated with debt restructuring and spending cuts. The cancellation of a meeting between President Joe Biden and Hichilema over LGBT rights concerns may complicate relations with Washington.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Subhadip Roy ◽  
Subhalaxmi Mohapatra

Purpose The challenges and factors of household adoption and the use of alternative energy sources have been a point of discussion among researchers. The purpose of this study is to apply a variant of the unified theory of adoption and use of technology (i.e. UTAUT 2) to explore the effect of various constructs that influence technology adoption on the consumers’ intention to adopt (and use) solar power generators (SPG) at the household level and the subsequent switching behavior. Design/methodology/approach Based on survey data collected from six cities in India (n = 1,246), factor analysis and structural equation modeling are applied for data analysis and testing the study hypotheses. Findings The results of the structural equation model found UTAUT constructs performance expectancy, effort expectancy, social influence and hedonic to positively affect behavioral intentions to adopt SPG. However, facilitating conditions and perceived value was not found to affect behavioral intentions to adopt SPG. Behavioral intentions to adopt SPG was found to positively influence the switching behavior. Research limitations/implications The present study augments the domain of alternative energy usage behavior by applying the UTAUT 2 in the adoption of alternative energy sources (namely, solar) and subsequent switching behavior from traditional sources at the household level. Practical implications The findings from the present study will guide the marketers and policymakers on the consumer attitudinal and behavioral aspects of solar energy usage at the household level and subsequent switching behavior. Originality/value The present study is novel as it moves beyond household-level behavioral intention to use solar energy and includes the switching behavior to shift to solar power from traditional energy sources.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Antonio Garcia-Amate ◽  
Alicia Ramírez-Orellana ◽  
Alfonso A. Rojo Ramirez

PurposeThis study aims to examine the attractiveness of the regional Dow Jones Sustainability Indexes (DJSI) and several renewable energy indexes during December 31, 2010 to December 31, 2019. This study uses a risk-return analysis and a set of explanatory factors. Lastly, this study conducts a comparative analysis of these indexes with conventional indexes. Design/methodology/approachThis study uses data from Eikon, a Thomson Reuters database. To analyze the indexes’ behavior, this study uses the indexes’ annual return as of December 31 for each year. Next, this study estimates the Fama and French’s five-factor model using an ordinary least squares regression for regional DJSI and renewable energy indexes. FindingsThe results show that regional DJSIs delivered returns both above and below conventional indexes. In contrast, renewable energy indexes had high betas and negative returns, making them unattractive to investors. Practical implicationsThe results imply the need for public financing programs that support the transition to a sustainable economy and reduce risk and increase the return on private investment. Social implicationsThis study provides insights for policymakers regarding the importance of sustainability indexes in the transition to a green economy. Originality/valueThis study contributes to the growing literature on Fama and French’s five-factor model of sustainability indexes, especially in the current context characterized by intense green political changes. In particular, this study complements the few studies that have addressed the economic implications of renewable energy indexes in markets.


Sign in / Sign up

Export Citation Format

Share Document