Experimental study on line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Dexing Hu ◽  
Qianhao Xiao ◽  
Shun Zhao

Purpose This paper aims to study line-contact elastohydrodynamic grease lubrication properties of surface-textured rollers as well as the effect of different crown widths (dw) on oil film thickness under textured conditions. Design/methodology/approach The laser processing method was used to make the micro-texture on the surface of GCr15 steel rollers; lithium grease was used as the lubricant, and line-contact elastohydrodynamic grease lubrication experiments under pure sliding conditions were performed on light interference elastohydrodynamic-lubricated experimental table. Findings The results show that the line-contact elastohydrodynamic grease lubrication is closely related to the textured crown width of steel rollers. At low speeds and light loads, texturing has an inevitable inhibitory effect on the formation of the lubricating oil film, and the smaller the width of the crown area, the more obvious the inhibitory effect, which is not conducive to the improvement of the lubrication condition. At high speeds and high loads, the textured roller with dw = 1 mm has the largest oil film thickness and shows better lubrication performance. Originality/value At present, there is little research on the surface texture of line-contact friction pairs. This work explores the effect of different textured crown width on the lubricating properties of line-contact elastohydrodynamic grease lubrication by experiment. It provides a new theoretical basis for the subsequent practical application of surface texture technology.

2019 ◽  
Vol 71 (9) ◽  
pp. 1080-1085 ◽  
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Yi Liu ◽  
Longjie Dai ◽  
Zhaohua Shang

Purpose The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive. Design/methodology/approach In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations. Findings It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”. Research limitations/implications The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems. Originality/value The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.


2020 ◽  
Vol 72 (5) ◽  
pp. 695-701
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Peiran Yang ◽  
Zhaohua Shang ◽  
Yi Liu ◽  
...  

Purpose This paper aims to study the influence of the dimension change of bush-pin on the pressure, oil film thickness, temperature rise and traction coefficient in contact zone by using a thermal elastohydrodynamic lubrication (EHL) model for finite line contact. Concretely, the effects of the equivalent curvature radius of the bush and the pin, and the length of the bush are investigated. Design/methodology/approach In this paper, the contact between the bush and pin is simplified as finite line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. A constitutive equation Ree–Eyring fluid is used in the calculations. Findings It is found that by selecting an optimal equivalent radius of curvature and prolonging the bush length can improve the lubrication state effectively. Originality/value Under specific working conditions, there exists an optimal equivalent radius to maximize the minimum oil film thickness in the contact zone. The increase of generatrix length will weaken the stress concentration effect in the rounded corner area at both ends of the bush, which can improve the wear resistance of chain. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0448.


2019 ◽  
Vol 71 (1) ◽  
pp. 146-153
Author(s):  
Yanqin Zhang ◽  
Zhiquan Zhang ◽  
Xiangbin Kong ◽  
Rui Li ◽  
Hui Jiang

Purpose The purpose of this paper was to obtain the lubrication characteristics of heavy hydrostatic bearing in heavy equipment manufacturing industry through theoretical analysis and numerical simulation. Design/methodology/approach This paper discusses the influence of oil film thickness variation on velocity field, outlet-L and outlet-R flow velocity under the hydrostatic bearing running in no-load 0 N, load 400 KN, full load 1,500 KN and rotating speeds of 10 r/min, 20 r/min, 30 r/min, 40 r/min, 50 r/min and 60 r/min, by using dynamic mesh technology and FLUENT software. Findings When the working table rotates clockwise, in the change process of oil film thickness, the fluid flow pattern of the lubricating oil at the edge of the sealing oil is the rule of laminar flow, and the oil cavity has a vortex. The outlet-R flow velocity becomes higher and higher by increasing the bearing load and working table speed, and the flow velocity increases with the decrease in oil film thickness; the outlet-L flow velocity increases with the decrease in oil film thickness under low rotating speed (less than 10 r/min) condition and decreases with the decrease of oil film thickness under high rotating speed (more than 60 r/min) condition. Originality/value The influence of the oil film thickness on the flow state distribution of the oil film was analyzed under different working conditions, and the influence rules of oil film thickness on the flow velocity of hydrostatic bearing oil pad was obtained by using dynamic mesh technology.


2018 ◽  
Vol 70 (1) ◽  
pp. 133-139
Author(s):  
Ye Zhou ◽  
Degong Chang ◽  
Songmei Li

Purpose This paper aims to improve the grease thermal elastohydrodynamic lubrication (TEHL) properties of the tripod sliding universal coupling (TSUC) under automotive practical conditions. For this purpose, the effect of effective radius was theoretically investigated. Design/methodology/approach Based on the simplified geometric model, the effect of effective radius on the pressure distribution, film thickness and temperature distribution of the TSUC was theoretically investigated using the multigrid and stepping methods. The TEHL properties were compared with the results obtained using the isothermal calculation method. Findings The results show that the thermal effect has a great impact on the film thickness and the pressure distribution of grease lubrication properties. Moreover, larger effective radius results in a wider but lower pressure distribution, a wider and thicker lubricating film and a lower temperature distribution. Originality/value The TSUC can be widely used in the front drive automotive transmission because it can transmit larger torque than before. The effect of effective radius on the thermal grease lubrication properties under automotive practical conditions provides a new direction for designing it.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Xiaojie Han ◽  
Mingqing Si

Purpose This paper aims to study the influence of three-column groove shell radius, ball radius, lubricating oil viscosity and elastic modulus on the thermal elastohydrodynamic lubrication (TEHL) characteristics and optimisation of the ball-type tripod universal joint. Design/methodology/approach The point contact TEHL model of the joint was developed, and the multi-grid method was used to solve it. The influence of three-column groove shell radius, ball radius, lubricating oil viscosity and elastic modulus on the lubrication characteristics was analysed. Further, the optimisation of the joint TEHL performance was carried out by the Kriging approximation model combined with the multi-objective particle swarm optimisation (MOPSO) algorithm. Findings The research results show that increasing groove shell radius and ball radius can effectively increase the oil film thickness, and decrease the oil film pressure, as well as the temperature rise. Decreasing elastic modulus can reduce the oil film temperature rise and pressure, and increasing viscosity can effectively increase the oil film thickness. The optimised minimum oil film thickness increases by 33.23% and the optimised maximum oil film pressure and maximum temperature rise decrease by 11.92% and 28.87%, respectively. Furthermore, the relative error of each response output is less than 10%. Originality/value This study applies TEHL theory to the tribological research of the ball-type tripod universal joint, and the joint’s lubrication performance is improved greatly by the Kriging model and MOPSO algorithm, which provides an effective measure to raise the joint’s working efficiency.


1971 ◽  
Vol 93 (3) ◽  
pp. 349-361 ◽  
Author(s):  
L. D. Wedeven ◽  
D. Evans ◽  
A. Cameron

Elastohydrodynamic oil film measurements for rolling point contact under starvation conditions are obtained using optical interferometry. The experimental measurements present a reasonably clear picture of the starvation phenomenon and are shown to agree with theoretical predictions. Starvation inhibits the generation of pressure and, therefore, reduces film thickness. It also causes the overall pressure, stress, and elastic deformation to become more Hertzian. Additional experiments using interferometry illustrate: the cavitation pattern, lubricant entrapment, grease lubrication, ball spin, and edge effects in line contact.


2018 ◽  
Vol 70 (3) ◽  
pp. 463-473 ◽  
Author(s):  
Fangwei Xie ◽  
Jie Zhu ◽  
Jianzhong Cui ◽  
Xudong Zheng ◽  
Xinjian Guo ◽  
...  

Purpose The purpose of this paper is to study the dynamic transmission of the oil film in soft start process of hydro-viscous drive (HVD) between the friction pairs with consideration of surface roughness, and obtain the distribution law of temperature, velocity, pressure, shear stress and viscous torque of the oil film. Design/methodology/approach The revised soft-start models of HVD were derived and calculated, including average Reynolds equation, asperity contact model, load force model and total torque model. Meanwhile, a 2D model of the oil film between friction pair was built and solved numerically using computational fluid dynamics (CFD) technique in FLUENT. Findings The results show that the maximum temperature gradually reduces from the intermediate range (z = 0.5 h) to the inner side of the friction pair along the direction of oil film thickness. As the soft-start process continues, pressure gradient along the direction of the oil film thickness gradually changes to zero. In addition, tangential velocity increases and yet radial velocity decreases with the increase of the radius. Originality/value In this paper, it was found that the viscous torque calculated by the numerical method is smaller than that by the CFD model, but their overall trend is almost the same. This also demonstrates the effectiveness of the numerical simulation.


2018 ◽  
Vol 70 (8) ◽  
pp. 1500-1508 ◽  
Author(s):  
Baogang Wen ◽  
Hongjun Ren ◽  
Pengfei Dang ◽  
Xu Hao ◽  
Qingkai Han

PurposeThe oil film thickness provides a key performance indicator of a ball bearing lubrication condition. This paper aims to propose an approach to calculate and measure the oil film thickness of the bearing.Design/methodology/approachOn a specially designed test rig, measurement of the capacitance is used to monitor the oil film thickness of ball bearing. A corrected film thickness formula taking account of the influences of non-Newtonian shear thinning and thermal is introduced to predict the oil film thickness of ball bearing. And then the film thickness distribution and the corresponding capacitances are calculated.FindingsMeasurement and calculation of oil film thickness in a ball bearing are carried out under various rotating speeds and external loads. By comparing the calculated capacitances with measured results, it can be concluded that the calculated results obtained by the amended film thickness formula are much closer to the test findings than the classical computed values according to Hamrock–Dowson.Originality/valueA new corrected film thickness formula is introduced in predicting oil film thickness of ball bearing and verified by the series of experiments according to capacitance method.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Haiji Wang ◽  
Guanglin Shi

Purpose The purpose of this paper is to propose an adjustable oil film thickness test rig for detecting lubrication characteristics of the slipper. The mathematical analysis of lubrication is introduced. Based on the results from the test rig, the results comparison from test rig and mathematical analysis is carried out. Design/methodology/approach This paper introduces a mechanism which can adjust the oil film thickness between the slipper and swash-plate. Feasibility is ensured, and the accuracy of test rig is guaranteed by the three-coordinate measuring machine. Three displacement sensors show the oil film thickness and its shape. The reacting force and torque resulting from oil film can be achieved by three S-type force sensors and a torque sensor, respectively. Findings The relative error of the reacting force is small. The relative error reduces and is acceptable when the deformation of retainer is taken into account. The thickness and tilt angle of oil film have less effect on the reacting force. However, they are significantly impact on torque. Originality/value The test rig proposed in this paper is able to adjust the oil film thickness, which is used to detecting the lubrication characteristics in pump design. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2020-0166/


Sign in / Sign up

Export Citation Format

Share Document