scholarly journals Prediction of fatigue limit of journal bearings considering a multi-axial stress state

2016 ◽  
Vol 68 (3) ◽  
pp. 430-438 ◽  
Author(s):  
Christopher Sous ◽  
Henrik Wünsch ◽  
Georg Jacobs ◽  
Christoph Broeckmann

Purpose The purpose of this paper is to investigate the applicability of the quadratic failure hypothesis (QFH) on journal bearings coated with a white metal sliding layer on the prediction of safe and unsafe operating conditions. The hypothesis covers operation conditions under static and dynamical loading. Design/methodology/approach Material tests and elastohydrodynamic, as well as structural, simulations were conducted to provide the required input data for the failure hypothesis. Component samples were tested to verify the results of the QFH. Findings The load bearing capacity of journal bearings was analysed for different operating conditions by the use of the QFH. Results allow for the identification of critical and non-critical loading conditions and are in accordance with component test results. Originality/value Today’s design guidelines for journal bearings do not consider a multi-axial stress state and actual stress distribution. The applied hypothesis enables consideration of multiaxiality inside the sliding surface layer, as well as determining the location of bearing fatigue due to material overload.

2015 ◽  
Vol 6 (5) ◽  
pp. 649-664
Author(s):  
Michael G. Papanikolaou ◽  
Michael G. Farmakopoulos ◽  
Chris A. Papadopoulos

Purpose – Wear in journal bearings occurs when the operating conditions (high load, high temperature, low angular velocity or low viscosity), downgrade the ability of the bearing to carry load. The wear depth increases because the rotor comes in contact with the bearing surface. Wear in journal bearings affects their characteristics because of its influence on the thickness of the fluid film. This influence can be detected in the dynamic behavior of the rotor and especially in the dynamic stiffness and damping coefficients. The paper aims to discuss these issues. Design/methodology/approach – In this paper, the effect of wear on the rotor dynamic stiffness and damping coefficients (K and C) of a short journal bearing is investigated. K and C in this work are estimated by using two methods a semi-analytical method and finite element (FE) analysis implemented in the ANSYS software. Findings – The main goal of this research is to make the identification of wear in journal bearings feasible by observing the alternation of their dynamic coefficients. Both of the methods implemented are proven to be useful, while FE analysis can provide more accurate results. Originality/value – This paper is original and has not been published elsewhere.


2019 ◽  
Vol 72 (3) ◽  
pp. 359-368
Author(s):  
Hulin Li ◽  
Zhongwei Yin ◽  
Yanzhen Wang

Purpose The purpose of this paper is to study the friction and wear properties of journal bearings under different working conditions. Design/methodology/approach Friction coefficient and wear losses of journal bearing under different working conditions have been determined by a bearing test rig. The worn surfaces of bearing were examined by scanning electron microscopy and laser three-dimensional micro-imaging profile measurements, and the tribological behavior and wear mechanisms were investigated. Findings The wear loss and friction coefficient of bearing under starting-stopping working condition is far greater than that of steady-state working conditions. In addition, the maximum wear loss under start-up and stop conditions is about 120 times of that under stable operating conditions. Under stable working conditions, the main wear forms of bearings are abrasive wear, under starting-stopping working conditions the main wear mechanisms of bearings are adhesion wear, abrasive wear and fatigue wear. Originality/value These research results have certain practical value for understanding the tribology behavior of journal bearings under different working conditions.


2015 ◽  
Vol 67 (6) ◽  
pp. 509-519 ◽  
Author(s):  
José Miguel Salgueiro ◽  
Gabrijel Peršin ◽  
Jasna Hrovatin ◽  
Ðani Juricic ◽  
Jože Vižintin

Purpose – The purpose of this paper is to present a data fusion methodology for online oil condition and wear particles monitoring for assessment of a mechanical spur gear transmission system. Design/methodology/approach – In this work, a background understanding of the tribological phenomena behind oil degradation and wear on the contact surface of mechanical elements is presented. Experimental results were obtained from oil continuously sampled from an operating a single-stage gearbox. Sampling was done by a multi-sensor automated prototype and online analysis performed by algorithms implemented in a C-code programmed graphical user interface. Findings – Two sets of experiments were performed to observe different fault events frequently occurred in an industrial environment. Fault detection was achieved in appropriate time under constant operating conditions. Under variable operating conditions, same results were obtained by adjusting analysis parameters to critical operation conditions. Originality/value – The value of this research work is the integration of the hardware and software necessary for online monitoring of oil condition and mechanical wear. The setup integrates online sampling with data acquisition, wireless communication, change detection and fault recognition computation. The approach has application in non-destructive online condition-based maintenance.


2021 ◽  
Vol 264 ◽  
pp. 05033
Author(s):  
Umidulla Abdurazzokov ◽  
Bakhramjan Sattivaldiev ◽  
Ravshan Khikmatov ◽  
Shakhnoza Ziyaeva

In operation conditions, the transport work of a vehicle is estimated by the increment in the mass of the freight over the distance traveled. This criterion does not characterize the mechanical work of the vehicle in the transport process. Without analyzing the energy costs of performing mechanical work, it is impossible to assess the energy efficiency of a vehicle. The energy efficiency of a vehicle is defined as the ratio of the mechanical work performed by the vehicle to the potential energy of the source. In this paper, it is proposed to determine the engine torque by fuel consumption. The engine torque value depends on the energy required for driving the vehicle. Based on the analysis of the results of computational and experimental studies, a method for assessing the energy efficiency of a vehicle with an internal combustion engine is proposed. The reliability of the results obtained is substantiated by the test results and the available information in practice.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 65 ◽  
Author(s):  
Philipp Bergmann ◽  
Florian Grün ◽  
Florian Summer ◽  
István Gódor

Hydrodynamic journal bearings are subjected to progressively rough loading conditions leading to an increased share of operation in mixed and boundary lubrication. This results in increased frictional losses, additional wear and a higher chance of failure, which calls for the understanding of wear processes and the necessity of a numerical assessment. We conducted wear investigations of journal bearings by making use of a close-to-component test setting, and the progress of wear could be linked to the introduced frictional energy and in combination with a comprehensive surface analysis tribological effects could be resolved in detail. Achieved wear coefficients were implemented in a novelly developed numerical framework, which allows for the dynamic numerical evaluation of operation in the fluid and mixed lubrication regime and simultaneously occurring wear processes. By comparing numerical and experimental results, we evaluated the numerical framework’s capability to conduct holistic simulations including aspects like dynamically changing operation conditions, fluid and mixed lubrication as well as wear.


2019 ◽  
Vol 71 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Qiang Li ◽  
Shuo Zhang ◽  
Yujun Wang ◽  
Wei-Wei Xu ◽  
Zhenbo Wang

Purpose The growing demand of efficiency and economy has led to a dramatic increase of the operating speed of the journal bearing, with a higher temperature distribution. This paper aims to investigate the three-dimensional temperature distribution of journal bearings. Design/methodology/approach A thermo-hydrodynamic lubrication model of a journal bearing was established based on the full 3D CFD method. A two-sided wall was used to include the conjugate heat transfer effect. The temperature-dependent characteristics of lubrication and cavitation impact were also included. The simulation results well agreed with the experimental results. Based on this method, the three-dimensional temperature distribution was analyzed under different operating conditions. Findings The temperature distribution in the radial direction had a difference. An increase of speed and de-crease of inlet temperature promoted temperature differences in the higher temperature zone and the increasing temperature zone, respectively. However, the inlet pressure had less influence on these differences. The temperature distribution was basically the same at a lower bearing conductivity. As the conductivity increased, the radial temperature difference was increased. Originality/value The temperature distribution in the radial direction was found under different operating conditions, and the present research provides references to understand the three-dimensional temperature distribution of journal bearings.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 581
Author(s):  
Yongbae Kim ◽  
Juyong Back ◽  
Jongweon Kim

A tachograph in a vehicle records the vehicle operating conditions, such as speed, distance, brake operation conditions, acceleration, GPS information, etc., in intervals of one second. For accidents, the tachograph records information, such as the acceleration and direction of a vehicle traveling in intervals of 1/100 s for 10 s before and after the accident occurs as collision data. A vehicle equipped with a tachograph is obliged to upload operation data to administrative organizations periodically via other auxiliary storage devices like a USB attached external memory or online wireless communication. If there is a problem with the recorded contents, data may be at risk of being tampered with during the uploading process. This research proposed tamper-resistant technology based on blockchain for data in online and offline environments. The suggested algorithm proposed a new data recording mechanism that operates in low-level hardware of digital tachographs for tamper-resistance in light blockchains and on/offline situations. The average encoding time of the proposed light blockchain was 1.85 ms/Mb, while the average decoding time was 1.65 ms/Mb. With the outliers in statistical tests removed, the estimated average encoding and decoding time was 1.32 ms/Mb and 1.29 ms/Mb, respectively, and the tamper verification test detected all the tampered data.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 412
Author(s):  
Mirosław K. Szukiewicz ◽  
Krzysztof Kaczmarski

A dynamic model of the hydrogenation of benzene to cyclohexane reaction in a real-life industrial reactor is elaborated. Transformations of the model leading to satisfactory results are presented and discussed. Operating conditions accepted in the simulations are identical to those observed in the chemical plant. Under those conditions, some components of the reaction mixture vanish, and the diffusion coefficients of the components vary along the reactor (they are strongly concentration-dependent). We came up with a final reactor model predicting with reasonable accuracy the reaction mixture’s outlet composition and temperature profile throughout the process. Additionally, the model enables the anticipation of catalyst activity and the remaining deactivated catalyst lifetime. Conclusions concerning reactor operation conditions resulting from the simulations are presented as well. Since the model provides deep insight into the process of simulating, it allows us to make knowledge-based decisions. It should be pointed out that improvements in the process run, related to operating conditions, or catalyst application, or both on account of the high scale of the process and its expected growth, will remarkably influence both the profits and environmental protection.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


Sign in / Sign up

Export Citation Format

Share Document