The integration of contactless static pose recognition and dynamic hand motion tracking control system for industrial human and robot collaboration

Author(s):  
Gilbert Tang ◽  
Seemal Asif ◽  
Phil Webb

Purpose – The purpose of this paper is to describe the integration of a gesture control system for industrial collaborative robot. Human and robot collaborative systems can be a viable manufacturing solution, but efficient control and communication are required for operations to be carried out effectively and safely. Design/methodology/approach – The integrated system consists of facial recognition, static pose recognition and dynamic hand motion tracking. Each sub-system has been tested in isolation before integration and demonstration of a sample task. Findings – It is demonstrated that the combination of multiple gesture control methods can increase its potential applications for industrial robots. Originality/value – The novelty of the system is the combination of a dual gesture controls method which allows operators to command an industrial robot by posing hand gestures as well as control the robot motion by moving one of their hands in front of the sensor. A facial verification system is integrated to improve the robustness, reliability and security of the control system which also allows assignment of permission levels to different users.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Gilbert Tang ◽  
Phil Webb

In industrial human-robot collaboration, variability commonly exists in the operation environment and the components, which induces uncertainty and error that require frequent manual intervention for rectification. Conventional teach pendants can be physically demanding to use and require user training prior to operation. Thus, a more effective control interface is required. In this paper, the design and evaluation of a contactless gesture control system using Leap Motion is described. The design process involves the use of RULA human factor analysis tool. Separately, an exploratory usability test was conducted to compare three usability aspects between the developed gesture control system and an off-the-shelf conventional touchscreen teach pendant. This paper focuses on the user-centred design methodology of the gesture control system. The novelties of this research are the use of human factor analysis tools in the human-centred development process, as well as the gesture control design that enable users to control industrial robot’s motion by its joints and tool centre point position. The system has potential to use as an input device for industrial robot control in a human-robot collaboration scene. The developed gesture control system was targeting applications in system recovery and error correction in flexible manufacturing environment shared between humans and robots. The system allows operators to control an industrial robot without the requirement of significant training.


2021 ◽  
Vol 21 (2) ◽  
pp. 1-22
Author(s):  
Chen Zhang ◽  
Zhuo Tang ◽  
Kenli Li ◽  
Jianzhong Yang ◽  
Li Yang

Installing a six-dimensional force/torque sensor on an industrial arm for force feedback is a common robotic force control strategy. However, because of the high price of force/torque sensors and the closedness of an industrial robot control system, this method is not convenient for industrial mass production applications. Various types of data generated by industrial robots during the polishing process can be saved, transmitted, and applied, benefiting from the growth of the industrial internet of things (IIoT). Therefore, we propose a constant force control system that combines an industrial robot control system and industrial robot offline programming software for a polishing robot based on IIoT time series data. The system mainly consists of four parts, which can achieve constant force polishing of industrial robots in mass production. (1) Data collection module. Install a six-dimensional force/torque sensor at a manipulator and collect the robot data (current series data, etc.) and sensor data (force/torque series data). (2) Data analysis module. Establish a relationship model based on variant long short-term memory which we propose between current time series data of the polishing manipulator and data of the force sensor. (3) Data prediction module. A large number of sensorless polishing robots of the same type can utilize that model to predict force time series. (4) Trajectory optimization module. The polishing trajectories can be adjusted according to the prediction sequences. The experiments verified that the relational model we proposed has an accurate prediction, small error, and a manipulator taking advantage of this method has a better polishing effect.


Author(s):  
LianZheng Ge ◽  
Jian Chen ◽  
Ruifeng Li ◽  
Peidong Liang

Purpose The global performance of industrial robots partly depends on the properties of drive system consisting of motor inertia, gearbox inertia, etc. This paper aims to deal with the problem of optimization of global dynamic performance for robotic drive system selected from available components. Design/methodology/approach Considering the performance specifications of drive system, an optimization model whose objective function is composed of working efficiency and natural frequency of robots is proposed. Meanwhile, constraints including the rated and peak torque of motor, lifetime of gearbox and light-weight were taken into account. Furthermore, the mapping relationship between discrete optimal design variables and component properties of drive system were presented. The optimization problem with mixed integer variables was solved by a mixed integer-laplace crossover power mutation algorithm. Findings The optimization results show that our optimization model and methods are applicable, and the performances are also greatly promoted without sacrificing any constraints of drive system. Besides, the model fits the overall performance well with respect to light-weight ratio, safety, cost reduction and others. Practical implications The proposed drive system optimization method has been used for a 4-DOF palletizing robot, which has been largely manufactured in a factory. Originality/value This paper focuses on how the simulation-based optimization can be used for the purpose of generating trade-offs between cost, performance and lifetime when designing robotic drive system. An applicable optimization model and method are proposed to handle the dynamic performance optimization problem of a drive system for industrial robot.


Author(s):  
Guanghui Liu ◽  
Qiang Li ◽  
Lijin Fang ◽  
Bing Han ◽  
Hualiang Zhang

Purpose The purpose of this paper is to propose a new joint friction model, which can accurately model the real friction, especially in cases with sudden changes in the motion direction. The identification and sensor-less control algorithm are investigated to verify the validity of this model. Design/methodology/approach The proposed friction model is nonlinear and it considers the angular displacement and angular velocity of the joint as a secondary compensation for identification. In the present study, the authors design a pipeline – including a manually designed excitation trajectory, a weighted least squares algorithm for identifying the dynamic parameters and a hand guiding controller for the arm’s direct teaching. Findings Compared with the conventional joint friction model, the proposed method can effectively predict friction factors during the dynamic motion of the arm. Then friction parameters are quantitatively obtained and compared with the proposed friction model and the conventional friction model indirectly. It is found that the average root mean square error of predicted six joints in the proposed method decreases by more than 54%. The arm’s force control with the full torque using the estimated dynamic parameters is qualitatively studied. It is concluded that a light-weight industrial robot can be dragged smoothly by the hand guiding. Practical implications In the present study, a systematic pipeline is proposed for identifying and controlling an industrial arm. The whole procedure has been verified in a commercial six DOF industrial arm. Based on the conducted experiment, it is found that the proposed approach is more accurate in comparison with conventional methods. A hand-guiding demo also illustrates that the proposed approach can provide the industrial arm with the full torque compensation. This essential functionality is widely required in many industrial arms such as kinaesthetic teaching. Originality/value First, a new friction model is proposed. Based on this model, identifying the dynamic parameter is carried out to obtain a set of model parameters of an industrial arm. Finally, a smooth hand guiding control is demonstrated based on the proposed dynamic model.


2015 ◽  
Vol 783 ◽  
pp. 105-113 ◽  
Author(s):  
Tadeusz Mikolajczyk

A special control system of IRb 60 industrial robots by using PC computer was shown in this work. Robots steering system equipped with the controller connected to computer’s LPT port was made and tested. This interface was connected to a manual control panel of the robot. The system was controlled by special VB 6.0 software. It is possible manual or automated control of robot move. Using this system was made other applications for many tasks of using an industrial robot equipped with tool and sensors in research and manufacturing.


2011 ◽  
Vol 464 ◽  
pp. 272-278 ◽  
Author(s):  
Wei You ◽  
Min Xiu Kong ◽  
Li Ning Sun ◽  
Chan Chan Guo

In this paper, aiming at solving the problems of dynamic coupling effects and flexibility of joints and links, a kind of control system specialized for high payload industrial robots is proposed . After the comparisons between the control systems in all kinds of robots and numerical machines, industrial PC with TwinCAT real-time system is chosen as the motion control unit, EtherCAT is used for command transmitting. The whole control system has a decoupled and centralized control structure. The proposed control system is applied in control of a kind of high payload material handling robots with complex compound control algorithms. The final results shows that the control commands can be easily calculated and transmitted in one sample unit. The proposed control scheme is meaningful to real engineering application.


Author(s):  
A. M. Romanov

A review of robotic systems is presented. The paper analyzes applied hardware and software solutions and summarizes the most common block diagrams of control systems. The analysis of approaches to control systems scaling, the use of intelligent control, achieving fault tolerance, reducing the weight and size of control system elements belonging to various classes of robotic systems is carried out. The goal of the review is finding common approaches used in various areas of robotics to build on their basis a uniform methodology for designing scalable intelligent control systems for robots with a given level of fault tolerance on a unified component base. This part is dedicated to industrial robotics. The following conclusions are made: scaling in industrial robotics is achieved through the use of the modular control systems and unification of main components; multiple industrial robot interaction is organized using centralized global planning or the use of previously simulated control programs, eliminating possible collisions in working area; intellectual technologies in industrial robotics are used primarily at the strategic level of the control system which is usually non-real time, and in some cases even implemented as a remote cloud service; from the point of view of ensuring fault tolerance, the industrial robots developers are primarily focused on the early prediction of faults and the planned decommissioning of the robots, and are not on highly-avaliability in case of failures; industrial robotics does not impose serious requirements on the dimensions and weight of the control devices.


2020 ◽  
pp. 355-364
Author(s):  
Supriya Sahu ◽  
Bibhuti Bhusan Choudhury

This article describes how industrial robots are generally used to perform different tasks in industries, such as pick and place, and many more operations in industries. Among these, pick and place is a very common and frequently used task. Path planning is the most important thing in order to make any process more economical. The main focus of the research is to design a fuzzy control system for path planning for industrial robots using artificial intelligence using fuzzy logic. For the analysis, ten different tasks are tested. For fuzzy logic systems, three membership functions are analyzed and compared to find the best result. From the research, it has been found that a Gaussian membership function gives more accurate result in comparison to the other two membership functions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marcelo Henrique Souza Bomfim ◽  
Eduardo José Lima II ◽  
Neemias Silva Monteiro ◽  
Vinícius Avelino Sena

Purpose This paper aims to present a new approach, called hybrid model reference adaptive controller or H-MRAC, for the hybrid controller (proportional-integral-derivative [PID + MRAC]) that will be used to control the position of a pneumatic manipulator. Design/methodology/approach It was developed a McKibben muscle using nautical mesh, latex and high-density polyethene connectors and it was constructed an elbow manipulator with two degrees of freedom, driven by these muscles. Then it was presented the H-MRAC control law based on the phenomenological characteristics of the plant, aiming at fast response and low damping. Lyapunov's theory was used as the project methodology, which ensures asymptotic stability for the control system. Findings It was developed a precise control system for a pneumatic manipulator and the results were compared to previous research. Research limitations/implications In collaborative robotics, human and machine occupy the same workspace. This research promotes the development of safer and more complacent mechatronic systems in the event of collisions. Practical implications As a practical implication, the research allows the substitution of electric motors by McKibben muscles in industrial robots with high accuracy. Social implications The pneumatic manipulator will make the human-robot physical interaction safer as it can prevent catastrophic collisions causing victims or equipment breakdown. Originality/value When compared to results in the literature, the present research showed a 37.51% and 36.74% lower global error in position tracking than MRAC and Adaptive proportional-integral-derivative (A-PID), respectively, validating its effectiveness.


2014 ◽  
Vol 62 (3) ◽  
pp. 595-601 ◽  
Author(s):  
M. Parzych ◽  
A. Dabrowski ◽  
D. Cetnarowicz

Abstract This paper presents the design process of a gesture control system based on the Microsoft Kinect sensor. An environment enabling implementation of the integrated system using a variety of equipment and software was selected and prepared. A method for integrating the sensor with the Arduino environment has also been discussed. Algorithms for remote gesture control of the given servodrive angle and the position of the robot arm gripper were prepared. The results of several experiments, which were carried out in order to determine the optimal method for starting, controlling, and stopping the drive and for assessment of the accuracy of the proposed method for the arm control, are presented.


Sign in / Sign up

Export Citation Format

Share Document