Finite element analysis of lightweight concrete-filled LSF walls exposed to realistic design fire

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Gatheeshgar Perampalam ◽  
...  

PurposeLight-Gauge Steel Frame (LSF) structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel lipped channel sections negative fire performance, cavity insulation materials are utilized in the LSF configuration to enhance its fire performance. The applicability of lightweight concrete filling as cavity insulation in LSF and its effect on the fire performance of LSF are investigated under realistic design fire exposure, and results are compared with standard fire exposure.Design/methodology/approachA Finite Element model (FEM) was developed to simulate the fire performance of Light Gauge Steel Frame (LSF) walls exposed to realistic design fires. The model was developed utilising Abaqus subroutine to incorporate temperature-dependent properties of the material based on the heating and cooling phases of the realistic design fire temperature. The developed model was validated with the available experimental results and incorporated into a parametric study to evaluate the fire performance of conventional LSF walls compared to LSF walls with lightweight concrete filling under standard and realistic fire exposures.FindingsNovel FEM was developed incorporating temperature and phase (heating and cooling) dependent material properties in simulating the fire performance of structures exposed to realistic design fires. The validated FEM was utilised in the parametric study, and results exhibited that the LSF walls with lightweight concrete have shown better fire performance under insulation and load-bearing criteria in Eurocode parametric fire exposure. Foamed Concrete (FC) of 1,000 kg/m3 density showed best fire performance among lightweight concrete filling, followed by FC of 650 kg/m3 and Autoclaved Aerated Concrete (AAC) 600 kg/m3.Research limitations/implicationsThe developed FEM is capable of investigating the insulation and load-bearing fire ratings of LSF walls. However, with the availability of the elevated temperature mechanical properties of the LSF wall, materials developed model could be further extended to simulate the complete fire behaviour.Practical implicationsLSF structures are popular in building construction due to their lightweight, easy erecting and constructability characteristics. However, due to steel-lipped channel sections negative fire performance, cavity insulation materials are utilised in the LSF configuration to enhance its fire performance. The lightweight concrete filling in LSF is a novel idea that could be practically implemented in the construction, which would enhance both fire performance and the mechanical performance of LSF walls.Originality/valueLimited studies have investigated the fire performance of structural elements exposed to realistic design fires. Numerical models developed in those studies have considered a similar approach as models developed to simulate standard fire exposure. However, due to the heating phase and the cooling phase of the realistic design fires, the numerical model should incorporate both temperature and phase (heating and cooling phase) dependent properties, which was incorporated in this study and validated with the experimental results. Further lightweight concrete filling in LSF is a novel technique in which fire performance was investigated in this study.

2020 ◽  
Vol 11 (4) ◽  
pp. 529-543
Author(s):  
Anjaly Nair ◽  
Osama (Sam) Salem

Purpose At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations. Design/methodology/approach To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column. Findings Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration. Originality/value According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.


2016 ◽  
Vol 7 (4) ◽  
pp. 349-364 ◽  
Author(s):  
H. Kinjo ◽  
T. Hirashima ◽  
S. Yusa ◽  
T. Horio ◽  
T. Matsumoto

Purpose Based on heating tests and load-bearing fire tests, this paper aims to discuss the charring rate, the temperature distribution in the section and the load-bearing capacity of structural glued laminated timber beams not only during the heating phase during a 1-h standard fire in accordance with ISO 834-1 but also during the cooling phase. Design/methodology/approach Heating tests were carried out to confirm the charring rate and the temperature distribution in the cross-section of the beams. Loading tests under fire conditions were carried out to obtain the load-deformation behavior (i.e. the stiffness, maximum load and ductility) of the beam. Findings The temperature at the centroid reached approximately 30°C after 1 h and then increased gradually until reaching 110-200°C after 4 h, during the cooling phase. The maximum load of the specimen exposed to a 1-h standard fire was reduced to approximately 30 per cent of that of the specimen at ambient temperature. The maximum load of the specimen exposed to a 1-h standard fire and 3 h of natural cooling in the furnace was reduced to approximately 14 per cent. In case of taking into consideration of the strength reduction at elevated temperature, the reduction ratio of the calculated bending resistance agreed with that of the test results during not only heating phase but also cooling phase. Originality/value The results of this study state that it is possible to study on strength reduction in cooling phase for end of heating, timber structural which has not been clarified. It is believed that it is possible to appropriately evaluate the fire performance, including the cooling phase of the timber structural.


Author(s):  
Lin-Han Han ◽  
Kan Zhou

Concrete-encased CFST (concrete filled steel tube) structure is a type of composite structure featuring an inner CFST component and an outer reinforced concrete (RC) component. They are gaining popularity in high-rise buildings and large-span buildings in China nowadays. To date, the behaviour of concrete-encased CFST structures at ambient temperature has been investigated, but their fire performance has seldom been addressed, including the performance in fire and after exposure to fire. This paper summarizes the fire test results of concrete-encased CFST columns and beam-column joints. The cruciform beam-column joint was composed of one continuous concrete-encased CFST column and two cantilevered reinforced concrete (RC) beams. These specimens were subjected to a combined effect of load and full-range fire. The test procedure included four phases, i.e. a loading phase at ambient temperature, a standard fire exposure phase with constant load applied, a sequential cooling phase and a postfire loading phase. The main findings are presented and analysed. Two types of failure were identified, i.e. the failure during fire exposure and the failure during postfire loading. Global buckling failure was observed for all the column specimens. The column specimens with common load ratios achieved high fire ratings without additional fire protection. The concrete-encased CFST columns also retained high postfire residual strength. As for the joint members, beam failure was observed in all cases. The measured temperature-time history and deformation-time history are also presented and discussed. For both the column and joint specimens, the deformation over the cooling phase was significantly greater than that in the standard fire exposure phase.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Irindu Upasiri ◽  
Chaminda Konthesingha ◽  
Anura Nanayakkara ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

Purpose In this study, the insulation fire ratings of lightweight foamed concrete, autoclaved aerated concrete and lightweight aggregate concrete were investigated using finite element modelling. Design/methodology/approach Lightweight aggregate concrete containing various aggregate types, i.e. expanded slag, pumice, expanded clay and expanded shale were studied under standard fire and hydro–carbon fire situations using validated finite element models. Results were used to derive empirical equations for determining the insulation fire ratings of lightweight concrete wall panels. Findings It was observed that autoclaved aerated concrete and foamed lightweight concrete have better insulation fire ratings compared with lightweight aggregate concrete. Depending on the insulation fire rating requirement of 15%–30% of material saving could be achieved when lightweight aggregate concrete wall panels are replaced with the autoclaved aerated or foamed concrete wall panels. Lightweight aggregate concrete fire performance depends on the type of lightweight aggregate. Lightweight concrete with pumice aggregate showed better fire performance among the normal lightweight aggregate concretes. Material saving of 9%–14% could be obtained when pumice aggregate is used as the lightweight aggregate material. Hydrocarbon fire has shown aggressive effect during the first two hours of fire exposure; hence, wall panels with lesser thickness were adversely affected. Originality/value Finding of this study could be used to determine the optimum lightweight concrete wall type and the optimum thickness requirement of the wall panels for a required application.


2021 ◽  
Vol 13 (4) ◽  
pp. 2314
Author(s):  
Thadshajini Suntharalingam ◽  
Perampalam Gatheeshgar ◽  
Irindu Upasiri ◽  
Keerthan Poologanathan ◽  
Brabha Nagaratnam ◽  
...  

3D Printed Concrete (3DPC) technology is currently evolving with high demand amongst researches and the integration of modular building system (MBS) with this technology would provide a sustainable solution to modern construction challenges. The use of lightweight concrete in such innovative construction methods offers lightweight structures with better heat and sound insulation compared to normal weight concrete. It is worth noting that fire and energy performance has become central to building design. However, there are limited research studies on the combined thermal energy and fire performance of 3DPC walls. Therefore, this study investigates fire performance of 20 numbers of varying 3DPC wall configurations using validated finite element models under standard fire conditions. The fire performance analysis demonstrated that 3DPC non-load bearing cavity walls have substantial resistance under standard fire load and its performance can be further improved with Rockwool insulation. There is significant improvement in terms of fire performance when the thickness of the walls increases in a parallel row manner. Previous thermal energy investigation also showed a lower U-value for increased thickness of similar 3DPC walls. This research concludes with a proposal of using 3DPC wall with Rockwool insulation for amplified combined thermal energy and fire performance to be used in MBS.


2018 ◽  
Vol 9 (3) ◽  
pp. 222-236 ◽  
Author(s):  
Joachim Schmid ◽  
Alessandro Santomaso ◽  
Daniel Brandon ◽  
Ulf Wickström ◽  
Andrea Frangi

Purpose The purpose of this study is to investigate the influencing factors on the charring behaviour of timber, the char layer and the charring depth in non-standard fires. Design/methodology/approach This paper summarizes outcomes of tests, investigating the influences on the charring behavior of timber by varying the oxygen content and the gas velocity in the compartment. Results show that charring is depending on the fire compartment temperature, but results show further that at higher oxygen flow, char contraction was observed affecting the protective function of the char layer. Findings In particular, in the cooling phase, char contraction should be considered which may have a significant impact on performance-based design using non-standard temperature fire curves where the complete fire history including the cooling phase has to be taken into account. Originality/value Up to now, some research on non-standard fire exposed timber member has been performed, mainly based on standard fire resistance tests where boundary conditions as gas flow and oxygen content especially in the decay phase are not measured or documented. The approach presented in this paper is the first documented fire tests with timber documenting the data required.


2018 ◽  
Vol 9 (4) ◽  
pp. 287-299
Author(s):  
Hitoshi Kinjo ◽  
Yusuke Katakura ◽  
Takeo Hirashima ◽  
Shuitsu Yusa ◽  
Kiyoshi Saito

Purpose This paper aims to discuss the fire performance of glulam timber beams based on their deflection behavior and load-bearing period, which were obtained from load-bearing fire tests under constant load conditions. Design/methodology/approach In this report, the fire performance, primarily deflection behavior and load-bearing period of glued laminated (glulam) timber beams will be discussed from the standpoint of load-bearing fire tests conducted during the cooling phase under constant load conditions. Then, based on the charring depth and the per section temperature transformation obtained from loading test results, the load-bearing capacity of the glulam timber beams will be discussed using the effective section method and the strength reduction factor, which will be calculated in accordance with the European standards for the design of timber structures (Eurocode 5). Findings In the cooling phase, the charring rate is decreases. However, as the temperature in the cross section rises, the deflection is increases. The failure mode was bending failure because of tensile failure of the lamina at the bottom of the beam. Moreover, a gap caused by shear failure in a growth ring in the beam cross-section in the vicinity of the centroid axis was observed. Shear failure was observed up until 1 to 3 h before end of heating. The calculated shear strength far exceeded the test results. Shear strength for elevated temperature of glued laminated timber is likely to decrease than the shear strength in Eurocode 5. Originality/value Unlike other elements, a characteristic problem of timber elements is that their load-bearing capacity decreases as they are consumed in a fire, and their bearing capacities may continue to degrade even after the fuel in the room has been exhausted. Therefore, the structural fire performance of timber elements should be clarified during not only the heating phase but also the subsequent cooling phase. However, there are few reports on the load-bearing capacity of timber elements that take the cooling phase after a fire into consideration.


2021 ◽  
Vol 11 (8) ◽  
pp. 3579
Author(s):  
Mathieu Létourneau-Gagnon ◽  
Christian Dagenais ◽  
Pierre Blanchet

Building elements are required to provide sufficient fire resistance based on requirements set forth in the National Building Code of Canada (NBCC). Annex B of the Canadian standard for wood engineering design (CSA O86-19) provides a design methodology to calculate the structural fire-resistance of large cross-section timber elements. However, it lacks at providing design provisions for connections. The objectives of this study are to understand the fire performance of modern mass timber fasteners such as self-tapping screws, namely to evaluate their thermo-mechanical behavior and to predict their structural fire-resistance for standard fire exposure up to two hours, as would be required for tall buildings in Canada. The results present the great fire performance of using self-tapping screws under a long time exposure on connections in mass timber construction. The smaller heated area of the exposed surface has limited thermal conduction along the fastener’s shanks and maintained their temperature profiles relatively low for two hours of exposure. Based on the heat-affected area, the study presents new design principles to determine the residual length of penetration that would provide adequate load-capacity of the fastener under fire conditions. It also allows determining safe fire-resistance values for unprotected fasteners in mass timber construction exposed up to two hours of standard fire exposure.


Author(s):  
Soumia Sekkiou ◽  
Noureddine Lahbari ◽  
Fabrice Bernard ◽  
Mohamed Salah Dimia

The fire behavior of concrete filled hollow steel sections has been studied extensively in various countries. Almost all essential parameters influencing their resistance have been identified: section shape and dimensions, concrete filling, reinforcement ratio, steel tube thickness, column slenderness, thermal and mechanical properties of steel and concrete, and even the contact problem at the steel-concrete interface. Most of these works were done under standard fire conditions (ISO), which are represented by a continuously increasing temperature over time. It is thus not really a curve reflecting a natural fire which includes not only a heating phase but also a cooling phase during which the temperature of the fire is decreasing back to ambient temperature.In this paper, the behavior of axially loaded concrete filled square hollow section columns subjected to natural fire conditions has been studied. The main objectives of this study are: first, to demonstrate the phenomenon of delayed collapse of this type of columns during or after the cooling phase of a fire, and then study the influence of certain determinant parameters, such as section size, tube thickness, reinforcement ratio, concrete cover and column length.The results show that delayed failures occur for massive sections, small values of the thickness of the steel tube and for the low-slendernes.


Sign in / Sign up

Export Citation Format

Share Document