Spot lap joining of AA5052 to AISI 1006 by aluminium extrusion via friction forming technique

2019 ◽  
Vol 15 (6) ◽  
pp. 1337-1351 ◽  
Author(s):  
Sabah Khammass Hussein ◽  
Isam Tareq Abdullah ◽  
Abbas Khammas Hussein

Purpose The purpose of this paper is to join AA5052 to AISI 1006 steel sheets using the spot friction forming technique. Design/methodology/approach A steel sheet was pre-holed with a diameter of 4.8 mm and pre-threaded with a single internal M6 thread. Lap joint configuration was used so that the aluminium specimen was put over steel. A rotating tool with a 10 mm diameter was used for the joining process. A Taguchi method was used to design three process parameters (plunging tool depth, rotating speed and preheating time), with three levels for each parameter. The effect of the process parameters on the joint shear strength was analysed. The macrostructure, microstructure and scanning electron microscope of the joint were investigated. The temperature distribution during the joining process was recorded. Findings The formed aluminium was extruded through the steel hole and penetrated through the thread slot. A mechanical interlock was achieved between the extruded aluminium and the steel. The plunging depth of the tool exhibited a significant effect on the joint shear strength. The joint efficiency increased gradually as the plunging depth increased. Two modes of failure were found shear and pull-out. The maximum temperature during the process reached 50 per cent of aluminium’s melting point. Originality/value For the first time, AA5052 was joined with AISI 1006 steel using a friction spot forming technique with an excellent joint efficiency.

2020 ◽  
Vol 37 (7) ◽  
pp. 2319-2336 ◽  
Author(s):  
Yasmin Murad ◽  
Haneen Abdel-Jabar ◽  
Amjad Diab ◽  
Husam Abu Hajar

Purpose The purpose of this study is to develop two empirical models that predict the shear strength of exterior beam-column joints exposed to monotonic and cyclic loading using Gene expression programming (GEP). Design/methodology/approach The GEP model developed for the monotonic loading case is trained and validated using 81 data test points and that for cyclic loading case is trained and validated using 159 data test points that collected from different 9 and 39 experimental programs, respectively. The parameters that are selected to develop the cyclic GEP model are concrete compressive strength, joint aspect ratio, column axial load and joint transverse reinforcement. The monotonic GEP model is developed using concrete compressive strength, column depth, joint width and column axial load. Findings GEP models are proposed in this paper to predict the joint shear strength of beam-column joints under cyclic and monotonic loading. The predicted results obtained using the GEP models are compared to those calculated using the ACI-352 code formulations. A sensitivity analysis is also performed to further validate the GEP models. Originality/value The proposed GEP models provide an accurate prediction for joint shear strength of beam-column joints under cyclic and monotonic loading that is more fitting to the experimental database than the ACI-352 predictions where the GEP models have higher R2 value than the code formulations.


2019 ◽  
Vol 11 (2) ◽  
pp. 286-302
Author(s):  
Isam Tareq Abdullah ◽  
Sabah Khammass Hussein ◽  
Abbas Khammas Hussein

Purpose The purpose of this paper is to join aluminium alloy AA6061 with polyvinyl chloride (PVC) sheets using the friction spot technique. Design/methodology/approach The AA6061 specimen was drilled with a semi-conical hole and put over the PVC specimen with a lap configuration. A friction spot technique was used to generate the required heat to melt and extrude the PVC through the aluminium hole. In this study, three process parameters were used: time, plunging depth and rotating speed of the tool. Thermal finite element model was built to analyse the process temperature. Effect of the process parameters on the joint shear strength and temperature was analysed using the design of experiments method. The microstructure investigation of the joint cross section was examined. Findings The input heat melted and extruded the polymer into the aluminium hole with the aid of tool pressure. A mechanical interlock was observed at the interface line between the polymer and aluminium. The scattered aluminium fragments into the molten polymer increased the shear strength of the joint. The hole diameter exhibited the highest effect on the joint strength compared with the other parameters. Specimen of minimum hole diameter recorded the maximum shear strength of 224 MPa. The proposed model gave a good agreement with the experimental data. Originality/value For the first time, the PVC was joined with AA6061 by the hot extrusion using the friction spot technique. The shear strength of joint reached 7.5 times of the base material (PVC).


Author(s):  
A Kritskiy ◽  
G. Zak ◽  
P. J. Bates

In this study, nylon tubes were welded to nylon plaques using laser transmission welding. A conical mirror inserted inside the tube was used to guide the laser beam along the weld path around the inner circumference of the tube. The effect of beam location with respect to the tip of conical mirror on beam distortion was modeled and assessed experimentally. The effects of the laser power, the angular speed, and the number of passes on the joint shear strength were examined. Process parameters that gave good joint strengths were identified.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Hui Yang ◽  
Jihui Wu

Nanosilver paste, an interconnect solder, is a common choice in the electronics packaging industry. However, higher sintering temperature and lower sintering strength limit its application. At present, doped nanosilver paste has been studied for use in chip interconnection. In order to improve the sintering properties and shear strength of nanosilver paste, we have developed a new tin-doped nanosilver paste (referred to as silver tin paste), and according to the decomposition temperature of the organic dispersant in the slurry, a corresponding sintering process with a maximum temperature of 300°C was developed. The product after sintering of the silver tin paste is a mixture of a solid solution of Ag and an Ag3Sn phase. Among them, the hard and brittle phase Ag3Sn diffuse distribution in the silver matrix for strengthening, and the solid solution of Ag acts as a replacement solid solution strengthening. As the content of doped Sn increases, the sintering strength increases remarkably. When the Sn content is 5%, the joint shear strength reaches the highest value of 50 MPa. When it exceeds 5%, the sintering strength gradually decreases, which may be caused by the excessive formation of the intermetallic compound IMC as the dopant content increases. This new tin-doped nanosilver technology has the characteristics of low-temperature sintering and high-temperature service, so it is expected to be widely used in semiconductor power devices.


2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Jagadeesan Saravanan ◽  
Ganapathy Kumaran

AbstractAn assessment of the joint shear strength of exterior concrete beam-column joints reinforced internally with Glass Fibre Reinforced Polymer (GFRP) reinforcements under monotonically increasing load on beams keeping constant load on columns is carried out in this study. Totally eighteen numbers of specimens are cast and tested for different parametric conditions like beam longitudinal reinforcement ratio, concrete strength, column reinforcement ratio, joint aspect ratio and influence of the joint stirrups at the joint. Also finite element analysis is performed to simulate the behaviour of the beam-column joints under various parametric conditions. Based on this study, a modified design equation is proposed for assessing the joint shear strength of the GFRP reinforced beam-column specimens based on the experimental results and the review of the prevailing design equations.


Sign in / Sign up

Export Citation Format

Share Document