Development of a deposition framework for implementation of a region-based adaptive slicing strategy in arc-based metal additive manufacturing

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nitish P. Gokhale ◽  
Prateek Kala

Purpose This study aims to develop and demonstrate a deposition framework for the implementation of a region-based adaptive slicing strategy for the Tungsten Inert Gas (TIG) welding-based additive manufacturing system. The present study demonstrates a deposition framework for implementing a novel region-based adaptive slicing strategy termed as Fast Interior and Accurate Exterior with Constant Layer Height (FIAECLH). Design/methodology/approach The mentioned framework has been developed by performing experiments using the design of experiments and analyzing the experimental data. Analysis results have been used to obtain the mathematical function to integrate customization in the process. The paper, in the end, demonstrates the FIAECLH framework for implementing region-based adaptive slicing strategy on the hardware level. Findings The study showcase a new way of implementing the region-based adaptive slicing strategy to arc-based metal additive manufacturing. The study articulating a new strategy for its implementation in all types of wire and arc additive manufacturing processes. Originality/value Wire-arc-based technology has the potential to deliver cost-effective solutions for metal additive manufacturing. The research on arc welding-based processes is being carried out in different dimensions. To deposit parts with complex geometry and better dimensional accuracy implementation of a novel region-based adaptive slicing strategy for the arc-based additive manufacturing process is an essential task. The successful implementation of an adaptive slicing strategy would ease the fabrication of complex geometry in less time. This paper accomplishes this need of implementing a region-based adaptive slicing strategy as no experimental investigation has been reported for the TIG-based additive manufacturing process.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Christina Öberg

Purpose Additive manufacturing has been described as converting supply chains into demand chains. By focusing on metal additive manufacturing as a contemporary technology causing ongoing disruption to the supply chain, the purpose of this paper is to describe and discuss how incumbent firms act during an ongoing, transformational disruption of their supply chain. Design/methodology/approach Interviews and secondary data, along with seminars attracting approximately 600 individuals operating in metal additive manufacturing, form the empirical basis for this paper. Findings The findings of this paper indicate how disruption occurs at multiple positions in the supply chain. Episodic positions as conceptualised in this paper refer to how parties challenged by disruption attempt to reach normality while speeding the transformational disruption. Originality/value This paper contributes to previous research by theorising about episodic positions in light of a supply chain disruption. The empirical data are unique in how they capture supply chain change at the time of disruption and illustrate disruptive, transformational change to supply chains. The paper interlinks research on disruption from the innovation and supply chain literature, with contributions to both.


2020 ◽  
Vol 32 ◽  
pp. 101093 ◽  
Author(s):  
Ahmed Arabi Hassen ◽  
Mark Noakes ◽  
Peeyush Nandwana ◽  
Seokpum Kim ◽  
Vlastimil Kunc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document