scholarly journals Rolling Element Bearings Fault Diagnosis Based on a Novel Optimal Frequency Band Selection Scheme

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 80748-80766 ◽  
Author(s):  
Qing Ni ◽  
Kesheng Wang ◽  
Jinde Zheng
Author(s):  
S. Chatterton ◽  
P. Borghesani ◽  
P. Pennacchi ◽  
A. Vania

Diagnostics of rolling element bearings is usually performed by means of a second-order cyclostationary tool applied to the vibration signal, due to the stochastic nature of the contact between the defect and the bearing rolling elements. The most used and simple method is the Envelope Analysis that is based on the identification of bearing damage frequency components in the so-called Square Envelope Spectrum. The main critical point of this technique is the selection of a suitable frequency band for the demodulation of the vibration signal. The most used approach for the frequency band selection is based on the evaluation of the band-Kurtosis index by mean of diagrams as the frequently used Fast Kurtogram or the more recent Protrugram. Both of them may fail in the selection of the optimal frequency band when other vibration sources affect the Kurtosis index. Also critical is the constancy in the time of this optimal band. In the paper, an experimental case of a bearing damage is investigated and an alternative approach for the filter band selection, the so-called “PeaksMap”, will be proposed by the authors and compared with the ones available in the literature.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4344 ◽  
Author(s):  
Lang Xu ◽  
Steven Chatterton ◽  
Paolo Pennacchi

The development of diagnostics for rolling element bearings (REBs) in recent years makes it possible to detect faults in bearings in real-time. Squared envelope analysis (SEA), in which the statistical characteristics of the squared envelope (SE) or the squared envelope spectrum (SES) are analysed, is widely recognized as both an effective and the simplest method. The most critical step of SEA is to find an optimal frequency band that contains the maximum defect information. The most commonly used approaches for selecting the optimal frequency band are derived from measuring the kurtosis of the SE or the SES. However, most methods fail to cope with the interference of a single or a few impulses in the corresponding domain. A new method is proposed in this paper called “PMFSgram”, which just calculates the kurtosis of the SES in the range centred at the first two harmonics with a span of three times the modulation frequency rather than the entire SES of the band filtered signals. It is possible to avoid most of the interference from a small number of undesired impulses in the SES. PMFSgram uses several bandwidths from 1.5 times to 4.5 times the fault frequency and for each bandwidth has the same number of central frequencies. The frequency setting method is able to select an optimal frequency band containing most of the useful information with less noise. The performance of the new method is verified using synthesized signals and actual vibration data.


2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.


Sign in / Sign up

Export Citation Format

Share Document