scholarly journals Optimal Control Strategy to Maximize the Performance of Hybrid Energy Storage System for Electric Vehicle Considering Topography Information

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 216994-217007
Author(s):  
Taha Sadeq ◽  
Chew Kuew Wai ◽  
Ezra Morris ◽  
Qazwan A. Tarbosh ◽  
Omer Aydogdu
2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Tiezhou Wu ◽  
Yi Ding ◽  
Yushan Xu

Under the global voice of “energy saving” and the current boom in the development of energy storage technology at home and abroad, energy optimal control of the whole hybrid electric vehicle power system, as one of the core technologies of electric vehicles, is bound to become a hot target of “clean energy” vehicle development and research. This paper considers the constraints to the performance of energy storage system in Parallel Hybrid Electric Vehicle (PHEV), from which lithium-ion battery frequently charges/discharges, PHEV largely consumes energy of fuel, and their are difficulty in energy recovery and other issues in a single cycle; the research uses lithium-ion battery combined with super-capacitor (SC), which is hybrid energy storage system (Li-SC HESS), working together with internal combustion engine (ICE) to drive PHEV. Combined with PSO-PI controller and Li-SC HESS internal power limited management approach, the research proposes the PHEV energy optimal control strategy. It is based on revised Pontryagin’s minimum principle (PMP) algorithm, which establishes the PHEV vehicle simulation model through ADVISOR software and verifies the effectiveness and feasibility. Finally, the results show that the energy optimization control strategy can improve the instantaneity of tracking PHEV minimum fuel consumption track, implement energy saving, and prolong the life of lithium-ion batteries and thereby can improve hybrid energy storage system performance.


2013 ◽  
Vol 448-453 ◽  
pp. 3158-3163
Author(s):  
Hai Fang Yu ◽  
Zhi Qiang Liu ◽  
Shu Mei Cui

It has been shown that none of any energy sources which own high specific energy or high specific power, but not both, can solely fulfil all the demands of hybrid electric vehicle (HEV) in some circumstances. In this paper a battery/ultra-capacitor hybrid energy storage system (B/UC HESS) using ultracapacitors which replace primary sole Ni-MH energy source, without any changes in other parts of HEV was presented. Based on the energy flow of energy storage system and operating status of the vehicle, a nonlinear proportional factor control strategy with a goal of improving battery life was introduced. The simulation results under different urban driving cycles show that the peak charge/discharge currents are smoothed effectively, which benefits the battery lifetime improvement. The results also show that the buffering effect of ultracapacitors has optimized the charging and discharging processes of Ni-MH battery considerably.


2019 ◽  
Vol 52 (9-10) ◽  
pp. 1420-1433
Author(s):  
S Devi Vidhya ◽  
M Balaji

This paper presents the modelling, design and power management of a hybrid energy storage system for a three-wheeled light electric vehicle under Indian driving conditions. The hybrid energy storage system described in this paper is characterized by effective coupling of Li-ion battery (primary energy source) and ultracapacitor (auxiliary source) interfaced with an efficient bi-directional converter. A design methodology related to vehicle modelling, choice of motor rating, converter design, sizing of Li-ion battery and ultracapacitor pack for the Indian driving cycle are presented. An improved real-time power-split management control strategy is proposed for proper power flow control of the hybrid energy storage system under various operating modes. The hybridized energy storage system with proposed control strategy improves the life of the battery and helps in effective utilization of the ultracapacitor. Furthermore, a relative comparison of the hybrid energy storage system with the battery energy storage system based on battery parameters and capital cost is also presented. Simulations are carried out in MATLAB/Simulink environment to verify the effectiveness of the proposed control strategy with modelled system components of three-wheeled light electric vehicle. A downscaled experimental prototype is built to validate the power-split between hybrid energy storage systems.


Author(s):  
Xing Zhang ◽  
Zuomin Dong ◽  
Curran Crawford

Onboard energy storage system (ESS) plays a major role for vehicle electrification. The performance of hybrid electric vehicle (HEV), plug-in HEV (PHEV), extended range electric vehicle (EREV), fuel cell vehicle (FCV), and electric vehicles (EV) heavily depends upon their ESS technology. The ESS must be able to store sufficient energy for adequate pure electric range, provide adequate peak power for needed vehicle performance under various driving cycles, absorb energy efficiently during regenerative breaking, and have long operation life and low costs. At present, pure battery based ESS often cannot effectively meet all these requirements due to many trade-offs. In order to improve the overall performance of ESS, integration of two (or more) energy sources have been studied to best utilize the unique characteristics of each, leading to a hybrid energy storage system (HESS). Hybridization of high-energy batteries and ultracapacitors with complementary characteristics present a common choice today. In this paper, the necessity and superiority of a HESS are illustrated considering system performance, efficiency, costs, functional life, and temperature requirements. Three major types of battery-ultracapacitor HESS, passive, semi-active and fully active, are presented. Various HESS control strategies proposed in the past are then reviewed, including rules or reference curves and tables based control, fuzzy logic control, and closed-loop control. Building upon these review and analyses, a novel control strategy based on signal separation using sparse coding is proposed at the end.


Sign in / Sign up

Export Citation Format

Share Document