scholarly journals Kalman Filtering with Delayed Measurements in Non-Gaussian Environments

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Sumanta Kumar Nanda ◽  
Guddu Kumar ◽  
Vimal Bhatia ◽  
Abhinoy Kumar Singh
2021 ◽  
Vol 18 (6) ◽  
pp. 8499-8523
Author(s):  
Weijie Wang ◽  
◽  
Shaoping Wang ◽  
Yixuan Geng ◽  
Yajing Qiao ◽  
...  

<abstract><p>Plasma glucose concentration (PGC) and plasma insulin concentration (PIC) are two essential metrics for diabetic regulation, but difficult to be measured directly. Often, PGC and PIC are estimated from continuous glucose monitoring and insulin delivery data. Nevertheless, the inter-individual variability and external disturbance (e.g. carbohydrate intake) bring challenges for accurate estimations. This study is to estimate PGC and PIC adaptively by identifying personalized parameters and external disturbances. An observable glucose-insulin (OGI) dynamic model is established to describe insulin absorption, glucose regulation, and glucose transport. The model parameters and disturbances can be extended to observable state variables and be identified dynamically by Bayesian filtering estimators. Two basic Gaussian noise based Bayesian filtering estimators, extended Kalman filtering (EKF) and unscented Kalman filtering (UKF), are implemented. Recognizing the prevalence of non-Gaussian noise, in this study, two new filtering estimators: particle filtering with Gaussian noise (PFG), and particle filtering with mixed non-Gaussian noise (PFM) are designed and implemented. The proposed OGI model in conjunction with the estimators is evaluated using the data from 30 in-silico subjects and 10 human participants. For in-silico subjects, the OGI with PFM estimator has the ability to estimate PIC and PGC adaptively, achieving RMSE of PIC $ 9.49\pm3.81 $ mU/L, and PGC $ 0.89\pm0.19 $ mmol/L. For human, the OGI with PFM has the promise to identify disturbances ($ 95.46\%\pm0.65\% $ accurate rate of meal identification). OGI model provides a way to fully personalize the parameters and external disturbances in real time, and has potential clinical utility for artificial pancreas.</p></abstract>


2019 ◽  
Vol 41 (7) ◽  
pp. 2077-2088 ◽  
Author(s):  
Wutao Qin ◽  
Xiaogang Wang ◽  
Naigang Cui

Motivated by the performance degradation of High-degree Cubature Kalman Filtering (HCKF) in coping with randomly delayed measurements in non-Gaussian system, a novel robust filtering named as Randomly Delayed High-degree Cubature Huber-based Filtering (RD-HCHF) is proposed in this paper. At first, the system model is re-written by the Bernoulli random variables to describe the randomly delayed measurements. Then, the Randomly Delayed HCKF (RD-HCKF) is derived based on the rewritten system model and 5th-degree spherical-radial cubature (SRC) rule. In order to enhance the robustness of the filter in glint noise case, the measurement update of RD-HCKF is modified by the Huber technique, which is essentially an M-estimator. Therefore, the proposed RD-HCHF is not only robust to the randomly delayed measurements, but also robust to the glint noise. In addition, the RD-HCHF is applied to the ballistic target tracking in boost phase, and the Gravity-Turn (GT) model is taken as the target model. Finally, the simulation is conducted and the tracking performance of RD-HCHF is compared with that of HCKF, RD-HCKF and High-degree Cubature Huber-based Filtering (HCHF). The results clearly confirm the superiority of the RD-HCHF.


Author(s):  
Xinmei Wang ◽  
Zhenzhu Liu ◽  
Feng Liu ◽  
Wei Liu ◽  
◽  
...  

Traditional unscented Kalman filtering (UKF) cannot solve the filtering problem for nonlinear systems with colored measurement noises and one-step randomly delayed measurements. To fix this problem, a new UKF algorithm is proposed in this paper. First, a system model with one-step randomly delayed measurements and colored measurement noises is established, wherein a first order Markov sequence model for whitening colored noises and an independently identical distributed Bernoulli variable for modeling one-step randomly delayed measurements is introduced. Second, an UKF is proposed for the above established models through unscented transformation by calculating the nonlinear states posterior mean and covariance based on the Bayesian filter framework. Specially, the proportional symmetric sampling method is used in the new UKF algorithm. Finally, the effectiveness and superiority of the proposed method is verified via simulation.


Sign in / Sign up

Export Citation Format

Share Document