Robust Control of Winding-Based DC-Bus Capacitor Discharge for PMSM Drives in Electric Vehicles

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Xiaojun Zhang ◽  
Jiaqiang Yang ◽  
Haolin Yang
2021 ◽  
Vol 12 (3) ◽  
pp. 107
Author(s):  
Tao Chen ◽  
Peng Fu ◽  
Xiaojiao Chen ◽  
Sheng Dou ◽  
Liansheng Huang ◽  
...  

This paper presents a systematic structure and a control strategy for the electric vehicle charging station. The system uses a three-phase three-level neutral point clamped (NPC) rectifier to drive multiple three-phase three-level NPC converters to provide electric energy for electric vehicles. This topology can realize the single-phase AC mode, three-phase AC mode, and DC mode by adding some switches to meet different charging requirements. In the case of multiple electric vehicles charging simultaneously, a system optimization control algorithm is adopted to minimize DC-bus current fluctuation by analyzing and reconstructing the DC-bus current in various charging modes. This algorithm uses the genetic algorithm (ga) as the core of computing and reduces the number of change parameter variables within a limited range. The DC-bus current fluctuation is still minimal. The charging station system structure and the proposed system-level optimization control algorithm can improve the DC-side current stability through model calculation and simulation verification.


A multi-input bidirectional dc to dc converter which can be implemented for electric vehicles is discussed in this paper. The importance of the converter depends on the phenomenon of backing up of regenerated power during braking. Three energy storage systems feed a common DC bus that interfaces the bidirectional DC/DC converter. Lack of energy supply to the electric vehicles due to less charging stations can be overcome by proposed converter. Any one of the energy storage system will be active throughout the operation of the vehicle and that the DC bus is continuously fed by a constant DC power. Pulse width modulation scheme is used to convert the available supply in the battery toe appropriate supply of the DC bus. The converter is tested by connecting a brushless DC motor to the output and the performance is analyzed with three modes of power transfer. The converter is designed in MATLAB/SIMULINK tool and the performance characteristics are discussed.


Sign in / Sign up

Export Citation Format

Share Document