A series DC arc fault detection method and hardware implementation

Author(s):  
Xiu Yao ◽  
Luis Herrera ◽  
Jin Wang
Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 323 ◽  
Author(s):  
Qiwei Lu ◽  
Zeyu Ye ◽  
Yilei Zhang ◽  
Tao Wang ◽  
Zhixuan Gao

Owing to the shortcomings of existing series arc fault detection methods, based on a summary of arc volt–ampere characteristics, the change rule of the line current and the relationship between the voltage and current are deeply analyzed and theoretically explained under different loads when series arc faults occur. A series arc fault detection method is proposed, and the software flowchart and principles of the applied hardware implementation are given. Finally, a prototype of an arc fault detection device (AFDD) with a rated voltage of 220 V and a rated current of 40 A is developed. The prototype was tested according to experimental methods provided by the Chinese national standard, GB/T 31143-2014. The experimental results show that the proposed detection method is simple and practical, and can be implemented using a low-cost microprocessor. The proposed method will provide good theoretical guidance in promoting the research and development of an AFDD.


2017 ◽  
Vol 45 (3) ◽  
pp. 472-478 ◽  
Author(s):  
Qing Xiong ◽  
Shengchang Ji ◽  
Lingyu Zhu ◽  
Lipeng Zhong ◽  
Yuan Liu

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4190
Author(s):  
Teng Li ◽  
Zhijie Jiao ◽  
Lina Wang ◽  
Yong Mu

Arc faults in an aircraft’s power distribution system (PDS) often leads to cable and equipment damage, which seriously threatens the personal safety of the passengers and pilots. An accurate and real-time arc fault detection method is needed for the Solid-State Power Controller (SSPC), which is a key protection equipment in a PDS. In this paper, a new arc detection method is proposed based on the improved LeNet5 Convolutional Neural Network (CNN) model after a Time–Frequency Analysis (TFA) of the DC currents was obtained, which makes the arc detection more real-time. The CNN is proposed to detect the DC arc fault for its advantage in recognizing more time–frequency joint details in the signals; the new structure also combines the adaptive and multidimensional advantages of the TFA and image intelligent recognition. It is confirmed by experimental data that the combined TFA–CNN can distinguish arc faults accurately when the whole training database has been repeatedly trained 3 to 5 times. For the TFA, two kinds of methods were compared, the Short-Time Fourier Transform (STFT) and Discrete Wavelet Transform (DWT). The results show that DWT is more suitable for DC arc fault detection. The experimental results demonstrated the effectiveness of the proposed method.


2019 ◽  
Vol 47 (9) ◽  
pp. 4370-4377 ◽  
Author(s):  
Shuangle Zhao ◽  
Yao Wang ◽  
Feng Niu ◽  
Chen Zhu ◽  
Youxin Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document