Numerical Study on Flow Field and Heat Transfer Characteristics of Rectangular Impinging Jets

Author(s):  
Liping Geng ◽  
Jingwei Zhou ◽  
Feifei Hong ◽  
Mo Yang
Author(s):  
Jing-Wei Zhou ◽  
Li-Ping Geng ◽  
Yu-Gang Wang ◽  
Fei-Fei Hong

An experimental investigation has been carried out to study the effect of unsteady periodically impinging jets on the flow field and heat transfer characteristics. The experiments are performed for steady jets and for typical periodical jets (i.e., sinusoidal and rectangular jets) at frequencies from 1.25 to 40Hz. The periodical jets are produced by a special mass flow rate controller. The investigation shows that the stagnation point heat transfer does not show any enhancement for the periodically impinging jets when the frequency is lower. Various signals of unsteady jets show distinguishing frequency dependences and the rectangular jet, which has a step change in signal function itself, is the most effective one for heat transfer improvement and the degree of enhancement is in the range 30–40% at frequency of 40 Hz. This increase is believed to be caused by higher oscillations and strong entrainments to the ambient fluid. The hotwire anemometry is used to measure the velocity at centerline of the nozzle and PIV is used to measure the phase-locked flow field of the periodically impinging jet. The flow field is also obtained by numerical simulation with CFD.


Author(s):  
Tarek M. Abdel-Salam

This study presents results for flow and heat transfer characteristics of two-dimensional rectangular impinging jets and three-dimensional circular impinging jets. Flow geometries under consideration are single and multiple impinging jets issued from a plane wall. Both confined and unconfined configurations are simulated. Effects of Reynolds number and the distance between the jets are investigated. Results are obtained with a finite volume computational fluid dynamics (CFD) code. Structured grids are used in all cases of the present study. Turbulence is treated with a two equation k-ε model. Different jet velocities have been examined corresponding to Reynolds numbers of 5,000 to 20,000. Results of the three-dimensional cases show that Reynolds number has no effect on the velocity distribution of the center jet. Results of both two-dimensional and three-dimensional cases show that Reynolds number highly affects the heat transfer and values of the Nusselt number. The maximum Nusselt number was always found at the stagnation point of the center jet.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Prabhakar Subrahmanyam ◽  
B. K. Gnanavel

Abstract Detailed heat transfer distributions of multiple microscaled tapered jets orthogonally impinging on the surface of a high-power density silicon wall is presented. The tapered jets issued from two different impingement setup are studied—(a) single circular nozzle and (b) dual circular nozzles. Jets are issued from the inlet(s) at four different Reynolds numbers {Re = 8000, 12,000, 16,000, 20,000}. The spacing between the tapered nozzle jets and the bare die silicon wall (z/d) is adjusted to be 4, 8, 12, and 16 jet nozzle diameters away from impinging influence. The impact of varying the nozzle to the silicon wall (z/d) standoff spacing up to 16 nozzle jet diameters and its effects on flow fields on the surface of the silicon, specifically the entrainment pattern on the silicon surface, is presented. Heat transfer characteristics of impinging jets on the hot silicon wall is investigated by means of large eddy simulations (LES) at a Reynolds of 20,000 on each of the four z/d spacing and compared against its equivalent Reynolds-averaged Navier–Stokes (RANS) cases. Highest heat transfer coefficients are obtained for the dual inlet system. A demarcation boundary region connecting all the microvortices between impinging jets is prominently visible at smaller z/d spacing—the region where the target silicon wall is within the sphere of influence of the potential core of the jet. This research focuses on the underlying physics of multiple tapered nozzles jet impingement issued from single and dual nozzles and its impact on turbulence, heat transfer distributions, entrainment, and other pertinent flow-field characteristics.


Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Litan Kumar Saha ◽  
Sadia Siddiqa

A numerical study is performed to investigate nanofluids' flow field and heat transfer characteristics between the domain bounded by a square and a wavy cylinder. The left and right walls of the cavity are at constant low temperature while its other adjacent walls are insulated. The convective phenomena take place due to the higher temperature of the inner corrugated surface. Super elliptic functions are used to transform the governing equations of the classical rectangular enclosure into a system of equations valid for concentric cylinders. The resulting equations are solved iteratively with the implicit finite difference method. Parametric results are presented in terms of streamlines, isotherms, local and average Nusselt numbers for a wide range of scaled parameters such as nanoparticles concentration, Rayleigh number, and aspect ratio. Several correlations have been deduced at the inner and outer surface of the cylinders for the average Nusselt number, which gives a good agreement when compared against the numerical results. The strength of the streamlines increases significantly due to an increase in the aspect ratio of the inner cylinder and the Rayleigh number. As the concentration of nanoparticles increases, the average Nusselt number at the internal and external cylinders becomes stronger. In addition, the average Nusselt number for the entire Rayleigh number range gets enhanced when plotted against the volume fraction of the nanofluid.


Sign in / Sign up

Export Citation Format

Share Document