Commutation Torque Ripple Minimization for Three Phase BLDC Motor Drive using A Simple PWM Scheme Reliable to Motor Parameter Variation

Author(s):  
YongKeun Lee
Author(s):  
C. Vidhya ◽  
V. Ravikumar ◽  
S. Muralidha

: The objective of this paper is to implement an ac link universal power converter controlled BLDC motor for medical applications. The ac link universal power converter is a soft switched high frequency ac link converter, created using the parallel combination of an inductor and a capacitor. The parallel ac link converter handle the ac voltages and currents with low reactive ratings at the link and offers improved power factor, low power consumption, more efficiency and less weight on comparison with the traditional dc link converter. Because of the high throughput, BLDC motors are preferred widely medical applications. A modulation technique called Space Vector Pulse Width Modulation (SVPWM) is used to generate the three phase power for the BLDC motors from the input DC supply. To validate the proposed system, simulations are performed in MATLAB – Simulink and an experimental prototype is constructed to supplement the simulation results.


This manuscript proposes a comparative analysis of BLDC motor performance at various ratings. The BLDC motor may act as a replacement for conventional engines such as the Brushed DC motor, the induction motor, the switched reluctance motors, etc. Because of the BLDC motor's overweight merits, modeling is performed to improve system performance. The torque feature of BLDC motor plays an extremely significant aspect in the fabrication of the BLDC motor drive device, so it is crucial to approximation the exact torque value that is calculated by the simulation of the model proposed in MATLAB software. In the MATLAB / Simulink setting, different ratings of BLDC motor are simulated after the creation of the straightforward analytical model of the three-phase BLDC motor with counter electromotive force trapezoidal waveforms. Based on the review, a comparative examination of each valued engine outcome is displayed in the MATLAB environment's Graphical User Interface.


Sign in / Sign up

Export Citation Format

Share Document