Multiobjective robust discrete dynamic output-feeback control synthesis based on closed-loop reference model

Author(s):  
Wagner Eustaquio Gomes Bachur ◽  
Eduardo Nunes Goncalves ◽  
Valter Junior de Souza Leite ◽  
Reinaldo Martinez Palhares
2011 ◽  
Vol 84 (12) ◽  
pp. 2067-2080 ◽  
Author(s):  
E.N. Gonçalves ◽  
W.E.G. Bachur ◽  
R.M. Palhares ◽  
R.H.C. Takahashi

Author(s):  
Wagner Eustaquio Gomes Bachur ◽  
Eduardo Nunes Goncalves ◽  
Reinaldo Martinez Palhares ◽  
Ricardo Hiroshi Caldeira Takahashi

2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Yang Wang ◽  
Jinna Li ◽  
Xiaolei Ji

The tracking control of H∞ dynamic output feedback is proposed for the fuzzy networked systems of the same category, in which each system is discrete-time nonlinear and is missing measurable data. In other words, the loss of data packet occurs randomly in both the uplink and the downlink. The independent variables that are called the Bernoulli random variables are considered to design the loss of data packets. The method of parallel distributed compensation (PDC) in terms of the T-S fuzzy model is applied to investigate the dynamic controller of tracking control on the systems. Then, it is presented that the analytical H∞ performance of the output error between the reference model and the fuzzy model for the closed-loop system containing dynamic output feedback controller is proven. Furthermore, the achieved sufficient conditions in terms of LMIs ensure that the closed-loop system is stochastically stable in the H∞ sense. Finally, a numerical system is offered to show the effectiveness of the established technique.


Author(s):  
D P Stoten ◽  
M G Dye ◽  
M Webb

The minimal control synthesis (MCS) algorithm is an adaptive control strategy that requires no prior knowledge of plant dynamic parameters, and yet is guaranteed to provide global asymptotic stability of the closed-loop system. The purpose of this paper is to present MCS as applied to web tension und transport control a class of plant that has highly non-linear dynamics and time-varying parameters. The plant is difficult to control by conventional methods over its full operating range. A typical example and model of such a plant is presented along with the implementation of MCS. Experimental comparisons of MCS with conventional control benchmarks are provided. It will be seen that MCS significantly outperforms the conventional controller.


2013 ◽  
Vol 437 ◽  
pp. 623-628 ◽  
Author(s):  
Hsin Guan ◽  
Li Zeng Zhang ◽  
Xin Jia

Parameters of the optimal preview acceleration driver model for vehicle directional control are determined by drivers delay/lag time and parameters of the reference model of the controlled vehicle. A moving vehicle is a time-varying and nonlinear system, so it is difficult to obtain accurate parameters of the reference model. If large modeling errors of the reference model occur, the classic driver model cannot ensure the driver/vehicle closed-loop system have a satisfactory performance. In this paper, an improved optimal preview acceleration model with a correction factor was proposed, which is based on sensitivity analysis and MRAC (the model reference adaptive control). Simulation results show that the improved driver model has more satisfactory adaptability and robustness comparing with the classic driver model.


Author(s):  
D P Stoten ◽  
S A Neild

This paper presents a new form of the direct adaptive minimal control synthesis (MCS) algorithm. As its name suggests, the error-based minimal control synthesis with integral action (Er-MCSI) algorithm is solely driven by error signals that are generated within the closed-loop system, and contains an explicit integral gain term. The purpose of this new structure is, respectively, to remove the problem of variable adaptive effort with changes in the operating set point, and to remove gain ‘wind-up’ effects due to plant disturbances and signal offsets. The core of this paper contains a proof of stability for Er-MCSI, based on hyperstability theory, together with supporting simulation and implementation studies.


Automatica ◽  
2005 ◽  
Vol 41 (10) ◽  
pp. 1783-1790 ◽  
Author(s):  
Christopher Edwards ◽  
Nai One Lai ◽  
Sarah K. Spurgeon

Sign in / Sign up

Export Citation Format

Share Document