Promoting Computational Thinking through Visual Block Programming Tools

Author(s):  
Pedro Plaza ◽  
Manuel Castro ◽  
Jose Manuel Saez-Lopez ◽  
Elio Sancristobal ◽  
Rosario Gil ◽  
...  
Author(s):  
Serhat Altiok ◽  
Erman Yükseltürk

In our age, computational thinking that involves understanding human behavior and designing systems for solving problems is important as much as reading, writing and arithmetic for everyone. Computer programming is one of the ways that could be promote the process of developing computational thinking, in addition to developing higher-order thinking skills such as problem solving, critical and creative thinking skills etc. However, instead of focusing on problems and sub-problems, algorithms, or the most effective and efficient solution, focusing on programming language specific needs and problems affects the computational thinking process negatively. Many educators use different tools and pedagogical approaches to overcome these difficulties such as, individual work, collaborative work and visual programming tools etc. In this study, researchers analyze four visual programming tools (Scratch, Small Basic, Alice, App Inventor) for students in K-12 level and three methodologies (Project-based learning, Problem-based learning and Design-based learning) while teaching programming in K-12 level. In summary, this chapter presents general description of visual programming tools and pedagogical approaches, examples of how each tool can be used in programming education in accordance with the CT process and the probable benefits of these tools and approaches to explore the practices of computational thinking.


2022 ◽  
pp. 648-676
Author(s):  
Serhat Altiok ◽  
Erman Yükseltürk

In our age, computational thinking that involves understanding human behavior and designing systems for solving problems is important as much as reading, writing and arithmetic for everyone. Computer programming is one of the ways that could be promote the process of developing computational thinking, in addition to developing higher-order thinking skills such as problem solving, critical and creative thinking skills etc. However, instead of focusing on problems and sub-problems, algorithms, or the most effective and efficient solution, focusing on programming language specific needs and problems affects the computational thinking process negatively. Many educators use different tools and pedagogical approaches to overcome these difficulties such as, individual work, collaborative work and visual programming tools etc. In this study, researchers analyze four visual programming tools (Scratch, Small Basic, Alice, App Inventor) for students in K-12 level and three methodologies (Project-based learning, Problem-based learning and Design-based learning) while teaching programming in K-12 level. In summary, this chapter presents general description of visual programming tools and pedagogical approaches, examples of how each tool can be used in programming education in accordance with the CT process and the probable benefits of these tools and approaches to explore the practices of computational thinking.


Author(s):  
Gary Wong ◽  
Shan Jiang ◽  
Runzhi Kong

Computational thinking allows us to solve complex problem in a certain way, which has been taught in traditional computer science program in university. With the advanced digital computing technology, new visual programming tools have been developed to allow children at early age to explore the concept and practices of computational thinking, which could develop their multifaceted skills. In this study, it aims to report an exploratory study of two pioneer primary schools in Hong Kong on introducing computational thinking through coding. This study uses qualitative approach with classroom observations, field notes and group interviews (n = 14). We also develop a child-centered interview protocol to find out the perception of children in learning how to code. The results show that children are generally engaging in computational thinking activities and believe that this learning context can develop their multifaceted skills such as problem solving skills and creativity.


Author(s):  
Gary Wong ◽  
Shan Jiang ◽  
Runzhi Kong

Computational thinking allows us to solve complex problem in a certain way, which has been taught in traditional computer science program in university. With the advanced digital computing technology, new visual programming tools have been developed to allow children at early age to explore the concept and practices of computational thinking, which could develop their multifaceted skills. In this study, it aims to report an exploratory study of two pioneer primary schools in Hong Kong on introducing computational thinking through coding. This study uses qualitative approach with classroom observations, field notes and group interviews (n = 14). We also develop a child-centered interview protocol to find out the perception of children in learning how to code. The results show that children are generally engaging in computational thinking activities and believe that this learning context can develop their multifaceted skills such as problem solving skills and creativity.


2017 ◽  
Vol 15 (4) ◽  
pp. pp297-309 ◽  
Author(s):  
Simon Rose ◽  
M. P. Jacob Habgood ◽  
Tim Jay

Programming tools are being used in education to teach computer science to children as young as 5 years old. This research aims to explore young children’s approaches to programming in two tools with contrasting programming interfaces, ScratchJr and Lightbot, and considers the impact of programming approaches on developing computational thinking. A study was conducted using two versions of a Lightbot-style game, either using a ScratchJr-like or Lightbot style programming interface. A test of non-verbal reasoning was used to perform a matched assignment of 40, 6 and 7-year-olds to the two conditions. Each child then played their version of the game for 30 minutes. The results showed that both groups had similar overall performance, but as expected, the children using the ScratchJr-like interface performed more program manipulation or ‘tinkering’. The most interesting finding was that non-verbal reasoning was a predictor of program manipulation, but only for the ScratchJr-like condition. Children approached the ScratchJr-like program differently depending on prior ability. More research is required to establish how children use programming tools and how these approaches influence computational thinking.


Author(s):  
Gary Wong ◽  
Shan Jiang ◽  
Runzhi Kong

Computational thinking allows us to solve complex problem in a certain way, which has been taught in traditional computer science program in university. With the advanced digital computing technology, new visual programming tools have been developed to allow children at early age to explore the concept and practices of computational thinking, which could develop their multifaceted skills. In this study, it aims to report an exploratory study of two pioneer primary schools in Hong Kong on introducing computational thinking through coding. This study uses qualitative approach with classroom observations, field notes and group interviews (n = 14). We also develop a child-centered interview protocol to find out the perception of children in learning how to code. The results show that children are generally engaging in computational thinking activities and believe that this learning context can develop their multifaceted skills such as problem solving skills and creativity.


2019 ◽  
Vol 3 (3) ◽  
pp. 270
Author(s):  
Isra Khasyyatillah ◽  
Kamisah Osman

Computational Thinking (CT) is the main skill of the 21st century that is increasingly attracting more researchers to study how to implement CT in the learning and teaching process. Among the CT tools that can be used to develop CT is programming. Currently, availability and easily accessible programming tools have led researchers and educators to explore how to introduce CT in the context of learning and teaching in schools. Recognizing the importance of implementing CT in the classroom, this study aims to develop the CT-S (Computational Thinking and Scratch) module for the Linear Motion topic. The type of this study is research and development research to develop modules based on the ADDIE model to produce the CT-S module with validity and reliability. Data were analyzed using descriptive statistical analysis. The result showed that the CT-S module was valid. It is eligible to be used as the instructional material of Physics. This study implies that computational thinking skills can be integrated with other subjects besides computer science like physics. Therefore, teachers can design lessons that are relevant to the context and students' characteristics.


2011 ◽  
Author(s):  
Edusmildo Orozco ◽  
Rafael Arce-Nazario ◽  
Peter Musial ◽  
Cynthia Lucena-Roman ◽  
Zoraida Santiago

Sign in / Sign up

Export Citation Format

Share Document