Quantitative Comparison of Color Asymmetry Features for Automatic Melanoma Detection

Author(s):  
Ruchir Srivastava ◽  
Ee Ping Ong ◽  
Beng-Hai Lee ◽  
Lucinda Siyun Tan ◽  
Hong Liang Tey
Author(s):  
P.R. Smith ◽  
W.E. Fowler ◽  
U. Aebi

An understanding of the specific interactions of actin with regulatory proteins has been limited by the lack of information about the structure of the actin filament. Molecular actin has been studied in actin-DNase I complexes by single crystal X-ray analysis, to a resolution of about 0.6nm, and in the electron microscope where two dimensional actin sheets have been reconstructed to a maximum resolution of 1.5nm. While these studies have shown something of the structure of individual actin molecules, essential information about the orientation of actin in the filament is still unavailable.The work of Egelman & DeRosier has, however, suggested a method which could be used to provide an initial quantitative estimate of the orientation of actin within the filament. This method involves the quantitative comparison of computed diffraction data from single actin filaments with diffraction data derived from synthetic filaments constructed using the molecular model of actin as a building block. Their preliminary work was conducted using a model consisting of two juxtaposed spheres of equal size.


Author(s):  
Stuart McKernan

For many years the concept of quantitative diffraction contrast experiments might have consisted of the determination of dislocation Burgers vectors using a g.b = 0 criterion from several different 2-beam images. Since the advent of the personal computer revolution, the available computing power for performing image-processing and image-simulation calculations is enormous and ubiquitous. Several programs now exist to perform simulations of diffraction contrast images using various approximations. The most common approximations are the use of only 2-beams or a single systematic row to calculate the image contrast, or calculating the image using a column approximation. The increasing amount of literature showing comparisons of experimental and simulated images shows that it is possible to obtain very close agreement between the two images; although the choice of parameters used, and the assumptions made, in performing the calculation must be properly dealt with. The simulation of the images of defects in materials has, in many cases, therefore become a tractable problem.


1958 ◽  
Vol 27 (3) ◽  
pp. 314-324 ◽  
Author(s):  
B. Berde ◽  
A. Cerletti

2018 ◽  
Vol 26 (2) ◽  
Author(s):  
Dean A. Forbes

In a recent essay published in this journal, I illustrated the limitations one may encounter when sequencing texts temporally using s-curve analysis. I also introduced seriation, a more reliable method for temporal ordering much used in both archaeology and computational biology. Lacking independently ordered Biblical Hebrew (BH) data to assess the potential power of seriation in the context of diachronic studies, I used classic Middle English data originally compiled by Ellegård. In this addendum, I reintroduce and extend s-curve analysis, applying it to one rather noisy feature of Middle English. My results support Holmstedt’s assertion that s-curve analysis can be a useful diagnostic tool in diachronic studies. Upon quantitative comparison, however, the five-feature seriation results derived in my former paper are found to be seven times more accurate than the single-feature s-curve results presented here. 


2019 ◽  
Author(s):  
Ketan Khare ◽  
Frederick R. Phelan Jr.

<a></a><a>Quantitative comparison of atomistic simulations with experiment for glass-forming materials is made difficult by the vast mismatch between computationally and experimentally accessible timescales. Recently, we presented results for an epoxy network showing that the computation of specific volume vs. temperature as a function of cooling rate in conjunction with the time–temperature superposition principle (TTSP) enables direct quantitative comparison of simulation with experiment. Here, we follow-up and present results for the translational dynamics of the same material over a temperature range from the rubbery to the glassy state. Using TTSP, we obtain results for translational dynamics out to 10<sup>9</sup> s in TTSP reduced time – a macroscopic timescale. Further, we show that the mean squared displacement (MSD) trends of the network atoms can be collapsed onto a master curve at a reference temperature. The computational master curve is compared with the experimental master curve of the creep compliance for the same network using literature data. We find that the temporal features of the two data sets can be quantitatively compared providing an integrated view relating molecular level dynamics to the macroscopic thermophysical measurement. The time-shift factors needed for the superposition also show excellent agreement with experiment further establishing the veracity of the approach</a>.


Sign in / Sign up

Export Citation Format

Share Document