Resistance characterization of Au bump and anisotropic conductive adhesives under temperature and moisture conditions

Author(s):  
C. Lee ◽  
A. Yeo
2016 ◽  
Vol 23 (01) ◽  
pp. 1550091 ◽  
Author(s):  
ALEXANDER BERROCAL ◽  
RÓGER MOYA ◽  
MARÍA RODRIGUEZ-SOLIS ◽  
RICARDO STARBIRD ◽  
FREDDY MUÑOZ

The color of Tectona grandis wood is an attribute that favors its commercialization, however, wood color from fast-growth plantation trees is clear and lacks uniformity. The aim of this work is to characterize steamed teak wood by means of the Fourier transform infrared spectroscopy (FTIR) and [Formula: see text] color systems. Two moisture conditions (green and 50%) and two grain patterns (flat and quarter) of boards were analyzed through the application of different steaming times (0, 3, 6, 9, 12, 15 and 18[Formula: see text]h). The FTIR results showed that the bands at 1158, 1231, 1373 and 1419[Formula: see text]cm[Formula: see text] did not show any change with steaming, whereas the bands at 1053, 1108, 1453, 1506, 1536, 1558, 1595, 1652, 1683, 1700 and 1733[Formula: see text]cm[Formula: see text] presented a decrease in the intensity with the steaming time. The band at 1318[Formula: see text]cm[Formula: see text] was the only one that increased. Lightness ([Formula: see text]) was the most affected parameter, followed by yellowness ([Formula: see text]), while redness ([Formula: see text]) showed the smallest change. Surface color change ([Formula: see text]) presented the lowest value between 3[Formula: see text]h and 6[Formula: see text]h of steam-drying in the boards with flat grain, whereas for boards with quarter grain, the smallest [Formula: see text] value was obtained after 18[Formula: see text]h of steaming.


Author(s):  
Marcello Casa ◽  
Shirong Huang ◽  
Paolo Ciambelli ◽  
Nan Wang ◽  
Lilei Ye ◽  
...  
Keyword(s):  

Author(s):  
Nan Wang ◽  
Nikolaos Logothetis ◽  
Mu Wei ◽  
Shirong Huang ◽  
Lilei Ye ◽  
...  
Keyword(s):  

Author(s):  
Eduardo Leonel Bottega ◽  
Eder Luís Sari ◽  
Zanandra Boff de Oliveira ◽  
Alberto Eduardo Knies

Based on the measurement of soil penetration resistance (PR), it is possible to identify compacted soil layers, where root growth may be harmed, affecting crop development and yield. The objective of this work was to analyze the use of management zones (MZ), delimited on the basis of mapping of the spatial variability of the soil apparent electrical conductivity (ECa), in the differentiation of soil compaction levels. The work was carried out in a 25.8-ha no-tillage area, cultivated under a center pivot. The ECa was measured under two soil moisture conditions (13.7 and 16.45%), using the Terram® equipment. Soil penetration resistance (PR) was measured using the SoloStar PLG5500 penetrograph. Based on the spatial variability ECa mapping, management zones (2, 3, and 4 zones) were delimited. The mean PR values ??of each MZ were compared by the t-test of means. It was possible to differentiate mean values ??of penetration resistance (PR), which vary from 0.9 to 2.10 MPa, from the characterization of management classes generated on the basis of the ECa spatial variability. The highest stratification of PR values ??was obtained as a function of sampling directed at delimited management zones when the soil had lower moisture content (13.7%). The highest mean PR values ??were obtained for the split of the ECa map into at least three classes. It was identified that for the study area there is no need to perform any mechanical decompaction operation.


2012 ◽  
Vol 27 ◽  
pp. 676-679 ◽  
Author(s):  
U. Eitner ◽  
T. Geipel ◽  
S.-N. Holtschke ◽  
M. Tranitz

2006 ◽  
Vol 111 (D20) ◽  
Author(s):  
Claudio Tomasi ◽  
Boyan Petkov ◽  
Elena Benedetti ◽  
Vito Vitale ◽  
Andrea Pellegrini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document