An effective technique for the synthesis of an equiripple low pass prototype filter with asymmetric frequency response and arbitrary transfer function zeros

Author(s):  
Giuseppe Macchiarella
2021 ◽  
Vol 14 (7) ◽  
pp. 5089-5106
Author(s):  
Toprak Aslan ◽  
Olli Peltola ◽  
Andreas Ibrom ◽  
Eiko Nemitz ◽  
Üllar Rannik ◽  
...  

Abstract. Fluxes measured with the eddy covariance (EC) technique are subject to flux losses at high frequencies (low-pass filtering). If not properly corrected for, these result in systematically biased ecosystem–atmosphere gas exchange estimates. This loss is corrected using the system's transfer function which can be estimated with either theoretical or experimental approaches. In the experimental approach, commonly used for closed-path EC systems, the low-pass filter transfer function (H) can be derived from the comparison of either (i) the measured power spectra of sonic temperature and the target gas mixing ratio or (ii) the cospectra of both entities with vertical wind speed. In this study, we compare the power spectral approach (PSA) and cospectral approach (CSA) in the calculation of H for a range of attenuation levels and signal-to-noise ratios (SNRs). For a systematic analysis, we artificially generate a representative dataset from sonic temperature (T) by attenuating it with a first order filter and contaminating it with white noise, resulting in various combinations of time constants and SNRs. For PSA, we use two methods to account for the noise in the spectra: the first is the one introduced by Ibrom et al. (2007a) (PSAI07), in which the noise and H are fitted in different frequency ranges, and the noise is removed before estimating H. The second is a novel approach that uses the full power spectrum to fit both H and noise simultaneously (PSAA21). For CSA, we use a method utilizing the square root of the H with shifted vertical wind velocity time series via cross-covariance maximization (CSAH,sync). PSAI07 tends to overestimate the time constant when low-pass filtering is low, whilst the new PSAA21 and CSAH,sync successfully estimate the expected time constant regardless of the degree of attenuation and SNR. We further examine the effect of the time constant obtained with the different implementations of PSA and CSA on cumulative fluxes using estimated time constants in frequency response correction. For our example time series, the fluxes corrected using time constants derived by PSAI07 show a bias between 0.1 % and 1.4 %. PSAA21 showed almost no bias, while CSAH,sync showed bias of ±0.4 %. The accuracies of both PSA and CSA methods were not significantly affected by SNR level, instilling confidence in EC flux measurements and data processing in set-ups with low SNR. Overall we show that, when using power spectra for the empirical estimation of parameters of H for closed-path EC systems the new PSAA21 outperforms PSAI07, while when using cospectra the CSAH,sync approach provides accurate results. These findings are independent of the SNR value and attenuation level.


2016 ◽  
pp. 71-76
Author(s):  
H. Ukhina ◽  
A. Bilenko ◽  
V. Sytnikov

The paper considers improving efficiency of NPP software based I&C during adjustment and readjustment of its characteristics. The research analyzes impact of transfer function coefficient of digital components on features of frequency-response characteristics, which shall be considered during design of software based I&C. The paper objective was to determine the numerator and denominator dependencies of transfer function of first order high-pass and low-pass digital filters of cut-off frequency, and also to determine dependencies on pulsation coefficient.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Radu Matei

This paper proposes an analytical design method for two-dimensional square-shaped IIR filters. The designed 2D filters are adjustable since their bandwidth and orientation are specified by parameters appearing explicitly in the filter matrices. The design relies on a zero-phase low-pass 1D prototype filter. To this filter a frequency transformation is next applied, which yields a 2D filter with the desired square shape in the frequency plane. The proposed method combines the analytical approach with numerical approximations. Since the prototype transfer function is factorized into partial functions, the 2D filter also will be described by a factorized transfer function, which is an advantage in implementation.


2016 ◽  
Vol 15 (12) ◽  
pp. 2579-2586
Author(s):  
Adina Racasan ◽  
Calin Munteanu ◽  
Vasile Topa ◽  
Claudia Pacurar ◽  
Claudia Hebedean

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Juliana Reves Szemere ◽  
Horacio G. Rotstein ◽  
Alejandra C. Ventura

AbstractCovalent modification cycles (CMCs) are basic units of signaling systems and their properties are well understood. However, their behavior has been mostly characterized in situations where the substrate is in excess over the modifying enzymes. Experimental data on protein abundance suggest that the enzymes and their target proteins are present in comparable concentrations, leading to substrate sequestration by the enzymes. In this enzyme-in-excess regime, CMCs have been shown to exhibit signal termination, the ability of the product to return to a stationary value lower than its peak in response to constant stimulation, while this stimulation is still active, with possible implications for the ability of systems to adapt to environmental inputs. We characterize the conditions leading to signal termination in CMCs in the enzyme-in-excess regime. We also demonstrate that this behavior leads to a preferred frequency response (band-pass filters) when the cycle is subjected to periodic stimulation, whereas the literature reports that CMCs investigated so far behave as low-pass filters. We characterize the relationship between signal termination and the preferred frequency response to periodic inputs and we explore the dynamic mechanism underlying these phenomena. Finally, we describe how the behavior of CMCs is reflected in similar types of responses in the cascades of which they are part. Evidence of protein abundance in vivo shows that enzymes and substrates are present in comparable concentrations, thus suggesting that signal termination and frequency-preference response to periodic inputs are also important dynamic features of cell signaling systems, which have been overlooked.


2018 ◽  
Vol 876 ◽  
pp. 133-137
Author(s):  
Ping Cheng Chen ◽  
Chung Long Pan ◽  
J.D. Huang ◽  
S.H. Hong

A design and simulation for low pass microstrip line filter with defected ground structure has been researched, the main purpose is with the simplest method to design an ideal low pass filter. In this paper, simulated soft (Ansoft HFSS V.6.0) used to be simulated the frequency response under different geometric shape of DGS. The results show good performance of a low pass filter with DGS. Final, a low pass filter with DGS design and fabricated, The properties are shown as flow: center-frequency: 7.28G, S21:-47dB, cut-off frequency: 5.88GHz.


Author(s):  
Chingyei Chung ◽  
Chin-yuh Lin

Abstract In this paper, the physical meaning of transfer function zeros for collocated control in a general flexible structure system is discussed. For a flexible structure system, we propose the “Zero Dynamic Theorem”. The theorem states that in a flexible structure system, the flexible structure can be a circulatory system (non-sysmetric stiffness matrix) with viscous and gyroscopic damping (non-symmetric damping matrix), if the sensor output (generalized displacement) and the actuator input (generalized force) are “dual type” and the transfer function is strict proper and coprime (no pole/zero cancellation); then, the transfer function zeros are the natural frequencies of constrained structure. Furthermore, with this theorem, the interlacing pole/zero property for the gyroscopic systems is presented.


2008 ◽  
Vol 57 (5) ◽  
pp. 2854
Author(s):  
Qi Xun-Jun ◽  
Lin Bin ◽  
Cao Xiang-Qun ◽  
Chen Yu-Qing

Sign in / Sign up

Export Citation Format

Share Document