Solving specified-time distributed optimization problem with local inequality constraint based on penalty method

Author(s):  
Yuquan Zhang ◽  
Chengxin Xian ◽  
Yu Zhao
Author(s):  
Berge Djebedjian ◽  
Ashraf Yaseen ◽  
Magdy Abou Rayan

This paper presents a new adaptive penalty method for genetic algorithms (GA). External penalty functions have been used to convert a constrained optimization problem into an unconstrained problem for GA-based optimization. The success of the genetic algorithm application to the design of water distribution systems depends on the choice of the penalty function. The optimal design of water distribution systems is a constrained non-linear optimization problem. Constraints (for example, the minimum pressure requirements at the nodes) are generally handled within genetic algorithm optimization by introducing a penalty cost function. The optimal solution is found when the pressures at some nodes are close to the minimum required pressure. The goal of an adaptive penalty function is to change the value of the penalty draw-down coefficient during the search allowing exploration of infeasible regions to find optimal building blocks, while preserving the feasibility of the final solution. In this study, a new penalty coefficient strategy is assumed to increase with the total cost at each generation and inversely with the total number of nodes. The application of the computer program to case studies shows that it finds the least cost in a favorable number of function evaluations if not less than that in previous studies and it is computationally much faster when compared with other studies.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nawarat Ekkarntrong ◽  
Tipsuda Arunrat ◽  
Nimit Nimana

AbstractIn this paper, we consider a distributed optimization problem of minimizing sum of convex functions over the intersection of fixed-point constraints. We propose a distributed method for solving the problem. We prove the convergence of the generated sequence to the solution of the problem under certain assumption. We further discuss the convergence rate with an appropriate positive stepsize. A numerical experiment is given to show the effectiveness of the obtained theoretical result.


Author(s):  
Zicong Xia ◽  
Yang Liu ◽  
Jianquan Lu ◽  
Jianlong Qiu ◽  
Jinde Cao

2014 ◽  
Vol 15 (3) ◽  
pp. 776-796 ◽  
Author(s):  
Zhengfang Zhang ◽  
Weifeng Chen ◽  
Xiaoliang Cheng

AbstractThis paper investigates the eigenmode optimization problem governed by the scalar Helmholtz equation in continuum system in which the computed eigenmode approaches the prescribed eigenmode in the whole domain. The first variation for the eigenmode optimization problem is evaluated by the quadratic penalty method, the adjoint variable method, and the formula based on sensitivity analysis. A penalty optimization algorithm is proposed, in which the density evolution is accomplished by introducing an artificial time term and solving an additional ordinary differential equation. The validity of the presented algorithm is confirmed by numerical results of the first and second eigenmode optimizations in 1Dand 2Dproblems.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Junxiu Yan ◽  
Hui Yu

This paper addresses a distributed consensus optimization problem of a first-order multiagent system with time-varying delay. A continuous-time distributed optimization algorithm is proposed. Different from most ways of solving distributed optimization problem, the Lyapunov-Razumikhin theorem is applied to the convergence analysis instead of the Lyapunov-Krasovskii functionals with LMI conditions. A sufficient condition for the control parameters is obtained to make all the agents converge to the optimal solution of the system. Finally, an example is given to validate the effectiveness of our theoretical result.


Sign in / Sign up

Export Citation Format

Share Document