Existence of Solutions for a Class of Impulsive Differential Equations with Dirichlet Boundary Conditions

Author(s):  
Dan Zhang ◽  
Binxiang Dai
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yu Guo ◽  
Xiao-Bao Shu ◽  
Qianbao Yin

<p style='text-indent:20px;'>In this paper, we study the sufficient conditions for the existence of solutions of first-order Hamiltonian random impulsive differential equations under Dirichlet boundary value conditions. By using the variational method, we first obtain the corresponding energy functional. And by using Legendre transformation, we obtain the conjugation of the functional. Then the existence of critical point is obtained by mountain pass lemma. Finally, we assert that the critical point of the energy functional is the mild solution of the first order Hamiltonian random impulsive differential equation. Finally, an example is presented to illustrate the feasibility and effectiveness of our results.</p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


2021 ◽  
Vol 14 (3) ◽  
pp. 706-722
Author(s):  
Francis Ohene Boateng ◽  
Joseph Ackora-Prah ◽  
Benedict Barnes ◽  
John Amoah-Mensah

In this paper, we introduce a Finite Difference Fictitious Domain Wavelet Method (FDFDWM) for solving two dimensional (2D) linear elliptic  partial differential equations (PDEs) with Dirichlet boundary conditions on regular geometric domain. The method reduces the 2D PDE into a 1D system of ordinary differential equations and applies a compactly supported wavelet to approximate the solution. The problem is embedded in a fictitious domain to aid the enforcement of the Dirichlet boundary conditions. We present numerical analysis and show that our method yields better approximation to the solution of the Dirichlet problem than traditional methods like the finite element and finite difference methods.


Author(s):  
César E. Torres Ledesma

AbstractThe purpose of this paper is to study the existence of solutions for equations driven by a non-local regional operator with homogeneous Dirichlet boundary conditions. More precisely, we consider the problemwhere the nonlinear term


Sign in / Sign up

Export Citation Format

Share Document