A Survey Paper on Object Detection Methods in Image Processing

Author(s):  
Manisha Vashisht ◽  
Brijesh Kumar
Author(s):  
M. N. Favorskaya ◽  
L. C. Jain

Introduction:Saliency detection is a fundamental task of computer vision. Its ultimate aim is to localize the objects of interest that grab human visual attention with respect to the rest of the image. A great variety of saliency models based on different approaches was developed since 1990s. In recent years, the saliency detection has become one of actively studied topic in the theory of Convolutional Neural Network (CNN). Many original decisions using CNNs were proposed for salient object detection and, even, event detection.Purpose:A detailed survey of saliency detection methods in deep learning era allows to understand the current possibilities of CNN approach for visual analysis conducted by the human eyes’ tracking and digital image processing.Results:A survey reflects the recent advances in saliency detection using CNNs. Different models available in literature, such as static and dynamic 2D CNNs for salient object detection and 3D CNNs for salient event detection are discussed in the chronological order. It is worth noting that automatic salient event detection in durable videos became possible using the recently appeared 3D CNN combining with 2D CNN for salient audio detection. Also in this article, we have presented a short description of public image and video datasets with annotated salient objects or events, as well as the often used metrics for the results’ evaluation.Practical relevance:This survey is considered as a contribution in the study of rapidly developed deep learning methods with respect to the saliency detection in the images and videos.


2021 ◽  
Vol 1737 (1) ◽  
pp. 012045
Author(s):  
M Khairudin ◽  
S Yatmono ◽  
AC Nugraha ◽  
M Ikhsani ◽  
A Shah ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


2021 ◽  
Vol 11 (13) ◽  
pp. 6006
Author(s):  
Huy Le ◽  
Minh Nguyen ◽  
Wei Qi Yan ◽  
Hoa Nguyen

Augmented reality is one of the fastest growing fields, receiving increased funding for the last few years as people realise the potential benefits of rendering virtual information in the real world. Most of today’s augmented reality marker-based applications use local feature detection and tracking techniques. The disadvantage of applying these techniques is that the markers must be modified to match the unique classified algorithms or they suffer from low detection accuracy. Machine learning is an ideal solution to overcome the current drawbacks of image processing in augmented reality applications. However, traditional data annotation requires extensive time and labour, as it is usually done manually. This study incorporates machine learning to detect and track augmented reality marker targets in an application using deep neural networks. We firstly implement the auto-generated dataset tool, which is used for the machine learning dataset preparation. The final iOS prototype application incorporates object detection, object tracking and augmented reality. The machine learning model is trained to recognise the differences between targets using one of YOLO’s most well-known object detection methods. The final product makes use of a valuable toolkit for developing augmented reality applications called ARKit.


2021 ◽  
Vol 43 (13) ◽  
pp. 2888-2898
Author(s):  
Tianze Gao ◽  
Yunfeng Gao ◽  
Yu Li ◽  
Peiyuan Qin

An essential element for intelligent perception in mechatronic and robotic systems (M&RS) is the visual object detection algorithm. With the ever-increasing advance of artificial neural networks (ANN), researchers have proposed numerous ANN-based visual object detection methods that have proven to be effective. However, networks with cumbersome structures do not befit the real-time scenarios in M&RS, necessitating the techniques of model compression. In the paper, a novel approach to training light-weight visual object detection networks is developed by revisiting knowledge distillation. Traditional knowledge distillation methods are oriented towards image classification is not compatible with object detection. Therefore, a variant of knowledge distillation is developed and adapted to a state-of-the-art keypoint-based visual detection method. Two strategies named as positive sample retaining and early distribution softening are employed to yield a natural adaption. The mutual consistency between teacher model and student model is further promoted through a hint-based distillation. By extensive controlled experiments, the proposed method is testified to be effective in enhancing the light-weight network’s performance by a large margin.


2011 ◽  
Vol 7 (1) ◽  
pp. 1-4
Author(s):  
Haider Hashim ◽  
Anton Prabuwono ◽  
Siti Norul Huda Abdullah

Pre-processing is very useful in a variety of situations since it helps to suppress information that is not related to the exact image processing or analysis task. Mathematical morphology is used for analysis, understanding and image processing. It is an influential method in the geometric morphological analysis and image understanding. It has befallen a new theory in the digital image processing domain. Edges detection and noise reduction are a crucial and very important pre-processing step. The classical edge detection methods and filtering are less accurate in detecting complex edge and filtering various types of noise. This paper proposed some useful mathematic morphological techniques to detect edge and to filter noise in metal parts image. The experimental result showed that the proposed algorithm helps to increase accuracy of metal parts inspection system.


Object detection (OD) within a video is one of the relevant and critical research areas in the computer vision field. Due to the widespread of Artificial Intelligence, the basic principle in real life nowadays and its exponential growth predicted in the epochs to come, it will transmute the public. Object Detection has been extensively implemented in several areas, including human-machine Interaction, autonomous vehicles, security with video surveillance, and various fields that will be mentioned further. However, this augmentation of OD tackles different challenges such as occlusion, illumination variation, object motion, without ignoring the real-time aspect that can be quite problematic. This paper also includes some methods of application to take into account these issues. These techniques are divided into five subcategories: Point Detection, segmentation, supervised classifier, optical flow, a background modeling. This survey decorticates various methods and techniques used in object detection, as well as application domains and the problems faced. Our study discusses the cruciality of deep learning algorithms and their efficiency on future improvement in object detection topics within video sequences.


Sign in / Sign up

Export Citation Format

Share Document