Simulation of Control Strategy for Microgrid System Frequency Recovery

Author(s):  
Putu Agus Aditya Pramana ◽  
Muhammad Ridwan
2012 ◽  
Vol 512-515 ◽  
pp. 788-793
Author(s):  
Xiao Hua Zhou ◽  
Ming Qiang Wang ◽  
Wei Wei Zou

Traditional decoupling control strategy of doubly-fed induction generator (DFIG) wind turbine makes little contribution to system inertia and do not participate in the system frequency control, the synchronization of large-scale wind power requires wind turbine have the ability to participate in the regulation of power system frequency. This paper adds a frequency control segment to traditional DFIG wind turbine and considers the doubly-fed wind turbine operating on the state of the super-synchronous speed, by analysis the effect of inertia and proportional control strategies, a fuzzy control strategy which combines the advantages of the former two control strategies is proposed, simulation results show that this control strategy can more effectively improve the system frequency response.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 276 ◽  
Author(s):  
Muhammed Worku ◽  
Mohamed Hassan ◽  
Mohamed Abido

An efficient power management control for microgrids with energy storage is presented in this paper. The proposed control scheme increases the reliability and resiliency of the microgrid based on three distributed energy resources (DERs), namely Photovoltaic (PV), battery, and diesel generator with local active loads. Coordination among the DERs with energy storage is essential for microgrid management. The system model and the control strategy were developed in Real Time Digital Simulator (RTDS). Decoupled d-q current control strategy is proposed and implemented for voltage source converters (VSCs) used to interface the PV and battery sources to the AC grid. A dc-dc buck converter with a maximum power point tracking function is implemented to maximize the intermittent energy generation from the PV array. A controller is proposed and employed for both grid connected and island modes of operation. In grid connected mode, the system frequency and voltage are regulated by the grid. During a fault in island mode, the diesel generator controls the system frequency and voltage in isochronous mode. Results based on the real time digital simulator are provided to verify the superiority and effectiveness of the proposed control scheme.


Sign in / Sign up

Export Citation Format

Share Document