Analysis of an SEIV Epidemic Model with Temporary Immunity and Saturated Incidence Rate

Author(s):  
Olukayode Adebimpe ◽  
Oluwakemi Abiodun ◽  
Olajumoke Oludoun ◽  
Babatunde Gbadamosi
Author(s):  
Laid Chahrazed

In this work, we consider a nonlinear epidemic model with temporary immunity and saturated incidence rate. Size N(t) at time t, is divided into three sub classes, with N(t)=S(t)+I(t)+Q(t); where S(t), I(t) and Q(t) denote the sizes of the population susceptible to disease, infectious and quarantine members with the possibility of infection through temporary immunity, respectively. We have made the following contributions: The local stabilities of the infection-free equilibrium and endemic equilibrium are; analyzed, respectively. The stability of a disease-free equilibrium and the existence of other nontrivial equilibria can be determine by the ratio called the basic reproductive number, This paper study the reduce model with replace S with N, which does not have non-trivial periodic orbits with conditions. The endemic -disease point is globally asymptotically stable if R0 ˃1; and study some proprieties of equilibrium with theorems under some conditions. Finally the stochastic stabilities with the proof of some theorems. In this work, we have used the different references cited in different studies and especially the writing of the non-linear epidemic mathematical model with [1-7]. We have used the other references for the study the different stability and other sections with [8-26]; and sometimes the previous references.


2021 ◽  
pp. 545-560
Author(s):  
Abiodun Oluwakemi ◽  
Ibrahim Mohammed ◽  
Adebimpe Olukayode ◽  
Oludoun Olajumoke ◽  
Gbadamosi Babatunde ◽  
...  

2015 ◽  
Vol 9 ◽  
pp. 1145-1158
Author(s):  
Muhammad Altaf Khan ◽  
Zulfiqar Ali ◽  
L. C. C. Dennis ◽  
Ilyas Khan ◽  
Saeed Islam ◽  
...  

Author(s):  
Modeste N’zi ◽  
Jacques Tano

AbstractIn this paper, we formulate an epidemic model for the spread of an infectious disease in a population of varying size. The total population is divided into three distinct epidemiological subclass of individuals (susceptible, infectious and recovered) and we study a deterministic and stochastic models with saturated incidence rate. The stochastic model is obtained by incorporating a random noise into the deterministic model. In the deterministic case, we briefly discuss the global asymptotic stability of the disease free equilibrium by using a Lyapunov function. For the stochastic version, we study the global existence and positivity of the solution. Under suitable conditions on the intensity of the white noise perturbation, we prove that there are a


Sign in / Sign up

Export Citation Format

Share Document