A novel scheme of unsupervised target detection for high-resolution SAR image

Author(s):  
Song Tu ◽  
Yu Li ◽  
Yi Su
2021 ◽  
Vol 13 (21) ◽  
pp. 4315
Author(s):  
Zongyong Cui ◽  
Yi Qin ◽  
Yating Zhong ◽  
Zongjie Cao ◽  
Haiyi Yang

In dealing with the problem of target detection in high-resolution Synthetic Aperture Radar (SAR) images, segmenting before detecting is the most commonly used approach. After the image is segmented by the superpixel method, the segmented area is usually a mixture of target and background, but the existing regional feature model does not take this into account, and cannot accurately reflect the features of the SAR image. Therefore, we propose a target detection method based on iterative outliers and recursive saliency depth. At first, we use the conditional entropy to model the features of the superpixel region, which is more in line with the actual SAR image features. Then, through iterative anomaly detection, we achieve effective background selection and detection threshold design. After that, recursing saliency depth is used to enhance the effective outliers and suppress the background false alarm to realize the correction of superpixel saliency value. Finally, the local graph model is used to optimize the detection results. Compared with Constant False Alarm Rate (CFAR) and Weighted Information Entropy (WIE) methods, the results show that our method has better performance and is more in line with the actual situation.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document