Efficient IEEE 802.15.4 ZigBee standard hardware design for IoT applications

Author(s):  
Vishal Deep ◽  
Tarek Elarabi
2019 ◽  
Vol 6 (2) ◽  
pp. 3437-3447 ◽  
Author(s):  
Abdullah Zubair Mohammed ◽  
Ajay Kumar Nain ◽  
Jagadish Bandaru ◽  
Ajay Kumar ◽  
D. Santhosh Reddy ◽  
...  

2020 ◽  
Vol 16 (3) ◽  
pp. 254-259
Author(s):  
Yehia R. Hamdy ◽  
Ahmed I Alghannam

ZigBee is widely used in wireless network in Internet of Things (IoT) applications to remotely sensing and automation due to its unique characteristics compared to other wireless networks. According to ZigBee classification of IEEE 802.15.4 standard, the network consists of four layers. The ZigBee topology is represented in second layer. Furthermore, the ZigBee topology consists of three topologies, star, tree and mesh. Also there are many transmission bands allowed in physical layer, such as 2.4 GHz, 915 MHz, 868 MHz. The aim of this paper is to evaluate the effect of ZigBee topologies on End to End delay and throughput for different transmission bands. Riverbed Modeler is used to simulate multiple ZigBee proposed scenarios and collect the results. The results of the study recommend which topology should be used at each transmission band to provide lowest End to End delay or obtain maximum throughput, which is case sensitive in some IoT applications that required for example minimum delay time or sending high amount of data.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1971 ◽  
Author(s):  
Sangrez Khan ◽  
Ahmad Naseem Alvi ◽  
Muhammad Awais Javed ◽  
Byeong-hee Roh ◽  
Jehad Ali

Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Michele Luvisotto ◽  
Federico Tramarin ◽  
Lorenzo Vangelista ◽  
Stefano Vitturi

Low-Power Wide-Area Networks (LPWANs) have recently emerged as appealing communication systems in the context of the Internet of Things (IoT). Particularly, they proved effective in typical IoT applications such as environmental monitoring and smart metering. Such networks, however, have a great potential also in the industrial scenario and, hence, in the context of the Industrial Internet of Things (IIoT), which represents a dramatically growing field of application. In this paper we focus on a specific LPWAN, namely, LoRaWAN, and provide an assessment of its performance for typical IIoT employments such as those represented by indoor industrial monitoring applications. In detail, after a general description of LoRaWAN, we discuss how to set some of its parameters in order to achieve the best performance in the considered industrial scenario. Subsequently we present the outcomes of a performance assessment, based on realistic simulations, aimed at evaluating the behavior of LoRaWAN for industrial monitoring applications. Moreover, the paper proposes a comparison with the IEEE 802.15.4 network protocol, which is often adopted in similar application contexts. The obtained results confirm that LoRaWAN can be considered as a strongly viable opportunity, since it is able to provide high reliability and timeliness, while ensuring very low energy consumption.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abdulfattah Noorwali ◽  
Ahmad Naseem Alvi ◽  
Mohammad Zubair Khan ◽  
Muhammad Awais Javed ◽  
Wadii Boulila ◽  
...  

Wireless sensor network (WSN) is an integral part of Internet of Things (IoT). The sensor nodes in WSN generate large sensing data which is disseminated to intelligent servers using multiple wireless networks. This large data is prone to attacks from malicious nodes which become part of the network, and it is difficult to find these adversaries. The work in this paper presents a mechanism to detect adversaries for the IEEE 802.15.4 standard which is a central medium access protocol used in WSN-based IoT applications. The collisions and exhaustion attacks are detected based on a soft decision-based algorithm. In case the QoS of the network is compromised due to large data traffic, the proposed protocol adaptively varies the duty cycle of the IEEE 802.15.4. Simulation results show that the proposed intrusion detection and adaptive duty cycle algorithm improves the energy efficiency of a WSN with a reduced network delay.


2019 ◽  
Vol 6 (5) ◽  
pp. 8883-8896 ◽  
Author(s):  
Nikumani Choudhury ◽  
Rakesh Matam ◽  
Mithun Mukherjee ◽  
Jaime Lloret

Sign in / Sign up

Export Citation Format

Share Document