Epidural spinal cord stimulation and partial weight-bearing therapy for the restoration of locomotion

Author(s):  
M. Carhart ◽  
J. He ◽  
R. Herman ◽  
S. D'Luzansky ◽  
R. Knight
2007 ◽  
Vol 98 (5) ◽  
pp. 2525-2536 ◽  
Author(s):  
Yury P. Gerasimenko ◽  
Ronaldo M. Ichiyama ◽  
Igor A. Lavrov ◽  
Gregoire Courtine ◽  
Lance Cai ◽  
...  

We hypothesized that epidural spinal cord stimulation (ES) and quipazine (a serotonergic agonist) modulates the excitability of flexor and extensor related intraspinal neural networks in qualitatively unique, but complementary, ways to facilitate locomotion in spinal cord–injured rats. To test this hypothesis, we stimulated (40 Hz) the S1 spinal segment before and after quipazine administration (0.3 mg/kg, ip) in bipedally step-trained and nontrained, adult, complete spinal (mid-thoracic) rats. The stepping pattern of these rats was compared with control rats. At the stimulation levels used, stepping was elicited only when the hindlimbs were placed on a moving treadmill. In nontrained rats, the stepping induced by ES and quipazine administration was non–weight bearing, and the cycle period was shorter than in controls. In contrast, the stepping induced by ES and quipazine in step-trained rats was highly coordinated with clear plantar foot placement and partial weight bearing. The effect of ES and quipazine on EMG burst amplitude and duration was greater in flexor than extensor motor pools. Using fast Fourier transformation analysis of EMG bursts during ES, we observed one dominant peak at 40 Hz in the medial gastrocnemius (ankle extensor), whereas there was less of dominant spectral peak in the tibialis anterior (ankle flexor). We suggest that these frequency distributions reflect amplitude modulation of predominantly monosynaptic potentials in the extensor and predominantly polysynaptic pathways in the flexor muscle. Quipazine potentiated the amplitude of these responses. The data suggest that there are fundamental differences in the circuitry that generates flexion and extension during locomotion.


2022 ◽  
Vol 23 (2) ◽  
pp. 608
Author(s):  
Tommy W. Sutor ◽  
Jayachandra Kura ◽  
Alex J. Mattingly ◽  
Dana M. Otzel ◽  
Joshua F. Yarrow

Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.


Author(s):  
Franziska Leiss ◽  
Julia Sabrina Götz ◽  
Matthias Meyer ◽  
Günther Maderbacher ◽  
Jan Reinhard ◽  
...  

Abstract Background Femoral component subsidence is a known risk factor for early failure of total hip arthroplasty (THA) using cementless stems. The aim of the study was to compare an enhanced recovery concept with early full weight-bearing rehabilitation and partial weight-bearing on stem subsidence. In addition, the influence of patient-related and anatomical risk factors on subsidence shall be assessed. Methods One hundred and fourteen patients underwent primary cementless THA and were retrospectively analyzed. Sixty-three patients had an enhanced recovery rehabilitation with early full weight-bearing and 51 patients had rehabilitation with partial weight-bearing (20 kg) for 6 weeks. Postoperative subsidence was analyzed on standing pelvic anterior–posterior radiographs after 4 weeks and 1 year. Subsidence was measured in mm. Anatomical and prosthetic risk factors (stem size, canal flare index, canal fill ratio as well as BMI and demographic data) were correlated. Results Femoral stem subsidence rate was significantly higher for the group with an enhanced recovery concept compared to the group with partial weight-bearing at the first radiological follow up after 4 weeks [2.54 mm (SD ± 1.86) vs. 1.55 mm (SD ± 1.80)] and the second radiological follow up after 1 year [3.43 mm (SD ± 2.24) vs. 1.94 (SD ± 2.16)] (p < 0.001, respectively). Stem angulation > 3° had a significant influence on subsidence. Canal flare index and canal fill ratio showed no significant correlation with subsidence as well as BMI and age. Conclusion In the present study, cementless stem subsidence was significantly higher in the group with enhanced recovery rehabilitation compared to partial weight-bearing. Small absolute values and differences were demonstrated and therefore possibly below clinical relevance. Anatomical radiological parameters and anthropometric data did not appear to be risk factors for stem subsidence.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonietta Canna ◽  
Lauri J. Lehto ◽  
Lin Wu ◽  
Sheng Sang ◽  
Hanne Laakso ◽  
...  

AbstractEpidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.


2021 ◽  
Vol LIII (2) ◽  
pp. 94-100
Author(s):  
Olga A. Bondarenko ◽  
Gaspar V. Gavrilov ◽  
Vadim A. Padurets ◽  
Roman V. Kasich

Purpose of the work. The article is devoted to the first experience of epidural stimulation in the Khanty-Mansiysk Autonomous Okrug at the budgetary institution Surgut Clinical Trauma Hospital. Clinical examples are presented for two main indications for the application of this technique (disease of the operated spine, a consequence of spinal cord injury in combination with chronic neuropathic pain syndrome). Research methods. An assessment of the intensity of pain syndrome was given according to a visual analogue scale, the Pain Detect questionnaire; indicators of anxiety, depression on the HADS scale; quality of life according to the Oswestry questionnaire for a follow-up period of 6-12 months in patients with chronic epidural stimulation. Results. A positive assessment of the action during test neurostimulation was 63.3% (38 patients). Of the established permanent systems, a good result was achieved and persisted for 12 months or more in 96% (24 patients). It was necessary to change the stimulation parameters in 13% (3 patients). Revision of permanent systems was performed in 20% (5 patients), due to the progression of the degenerative-dystrophic process of the spine, damage and migration of system elements. Conclusions. Chronic epidural spinal cord stimulation has established itself as a personalized, highly effective, minimally invasive and safe method of treating chronic neuropathic pain syndromes. Multicomponent corrective action is of scientific interest and requires further study.


Sign in / Sign up

Export Citation Format

Share Document