Analysis of U-slot rectangular patch FSS

Author(s):  
Alfredo Gomes Neto ◽  
Adaildo Gomes DAssuncao ◽  
Jefferson Costa e Silva ◽  
Andre Nascimento da Silva ◽  
Hillner de Paiva Almeida Ferreira ◽  
...  
Keyword(s):  



2020 ◽  
Vol 79 (11) ◽  
pp. 963-972
Author(s):  
V. Asokan ◽  
K. Senthilkumar ◽  
M. Palanivelan ◽  
J. Karthi ◽  
M. Lakshmanan




Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 778
Author(s):  
Iftikhar Ahmad ◽  
Houjun Sun ◽  
Umair Rafique ◽  
Zhang Yi

This paper presents a design of a triangular slot-loaded planar rectangular antenna array for wideband millimeter-wave (mm-wave) 5G communication systems. The proposed array realizes an overall size of 35.5 × 14.85 mm2. To excite the array elements, a four-way broadband corporate feeding network was designed and analyzed. The proposed array offered a measured impedance bandwidth in two different frequency ranges, i.e., from 23 to 24.6 GHz and from 26 to 45 GHz. The single-antenna element of the array consists of a rectangular patch radiator with a triangular slot. The partial ground plane was used at the bottom side of the substrate to obtain a wide impedance bandwidth. The peak gain in the proposed array is ≈12 dBi with a radiation efficiency of >90%. Furthermore, the array gives a half-power beamwidth (HPBW) of as low as 12.5°. The proposed array has been fabricated and measured, and it has been observed that the measured results are in agreement with the simulated data.



Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.



Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).



Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2516
Author(s):  
Bashar Bahaa Qas Elias ◽  
Ping Jack Soh ◽  
Azremi Abdullah Al-Hadi ◽  
Prayoot Akkaraekthalin ◽  
Guy A. E. Vandenbosch

This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave “trial and error” simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.



Sign in / Sign up

Export Citation Format

Share Document