3D Indoor Localization using 5G-based Particle Filtering and CAD Plans

Author(s):  
Hossein Shoushtari ◽  
Cigdem Askar ◽  
Dorian Harder ◽  
Thomas Willemsen ◽  
Harald Sternberg
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


2019 ◽  
Vol 26 (12) ◽  
pp. 1773-1777 ◽  
Author(s):  
Parvin Malekzadeh ◽  
Arash Mohammadi ◽  
Mihai Barbulescu ◽  
Konstantinos N. Plataniotis

Author(s):  
Anthony T. Trezza ◽  
Nurali N. Virani ◽  
Kelilah L. Wolkowicz ◽  
Jason Z. Moore ◽  
Sean N. Brennan

Freedom of mobility is a crucial aspect of our daily lives. Consequently, engineering solutions for mobility, including smart wheelchairs, are becoming increasingly important for those with disabilities. However, the lack of a reliable solution for indoor localization has affected the pace of research in this direction. GPS signals cannot be measured indoors and environment modifications for wheelchair localization can be expensive and intrusive. This research explores the feasibility of using ambient magnetic fields for indoor localization by exploiting the spatial non-uniformity due to ferromagnetic objects in ordinary working environments. A non-parametric density estimation technique was developed to build magnetic field maps. This approach is compared to an existing regression technique. Two different approximate kinematic models for the wheelchair are presented and implemented in a particle-filtering framework. Finally, the efficacy of these mapping techniques and motion models, including and excluding odometry information, are compared via tracking experiments conducted with a smart wheelchair.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2818
Author(s):  
Ruolin Guo ◽  
Danyang Qin ◽  
Min Zhao ◽  
Xinxin Wang

The crowdsourcing-based wireless local area network (WLAN) indoor localization system has been widely promoted for the effective reduction of the workload from the offline phase data collection while constructing radio maps. Aiming at the problem of the diverse terminal devices and the inaccurate location annotation of the crowdsourced samples, which will result in the construction of the wrong radio map, an effective indoor radio map construction scheme (RMPAEC) is proposed based on position adjustment and equipment calibration. The RMPAEC consists of three main modules: terminal equipment calibration, pedestrian dead reckoning (PDR) estimated position adjustment, and fingerprint amendment. A position adjustment algorithm based on selective particle filtering is used by RMPAEC to reduce the cumulative error in PDR tracking. Moreover, an inter-device calibration algorithm is put forward based on receiver pattern analysis to obtain a device-independent grid fingerprint. The experimental results demonstrate that the proposed solution achieves higher localization accuracy than the peer schemes, and it possesses good effectiveness at the same time.


2013 ◽  
Vol 9 (1) ◽  
pp. 74
Author(s):  
Hakan Koyuncu ◽  
Ahmet Çevik

Jennic type wireless sensor nodes are utilized together with a novel particle filtering technique for indoor localization. Target objects are localized with an accuracy of around 0.25 meters. The proposed technique introduces a new particle generation and distribution technique to improve current estimation of object positions. Particles are randomly distributed around the object in the sensing area within a circular strip of 2 STD of object distance measurements. Particle locations are related to object locations by using Gaussian weight distribution methods. Object distances from the transmitters are determined by using received RSSI values and ITU-R indoor propagation model. Measured object distances are used together with the particle distances from the transmitters to predict the object locations.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaoguo Zhang ◽  
Yujin Kuang ◽  
Haoran Yang ◽  
Hang Lu ◽  
Yuan Yang

With the increasing application potential of indoor personnel positioning, ultra-wideband (UWB) positioning technology has attracted more and more attentions of scholars. In practice, an indoor positioning process often involves multipath and Non-Line-Of-Sight (NLOS) problems, and a particle filtering (PF) algorithm has been widely used in the indoor positioning research field because of its outstanding performance in nonlinear and non-Gaussian estimations. Aiming at mitigating the accuracy decreasing caused by the particle degradation and impoverishment in traditional Sequential Monte Carlo (SMC) positioning, we propose a method to integrate the firefly and particle algorithm for multistage optimization. The proposed algorithm not only enhances the searching ability of particles of initialization but also makes the particles propagate out of the local optimal condition in the sequential estimations. In addition, to prevent particles from falling into the oscillatory situation and find the global optimization faster, a decreasing function is designed to improve the reliability of the particle propagation. Real indoor experiments are carried out, and results demonstrate that the positioning accuracy can be improved up to 36%, and the number of needed particles is significantly reduced.


Author(s):  
Nadia Ghariani ◽  
Mohamed Salah Karoui ◽  
Mondher Chaoui ◽  
Mongi Lahiani ◽  
Hamadi Ghariani

Author(s):  
Mohammad Salimibeni ◽  
Zohreh Hajiakhondi-Meybodi ◽  
Parvin Malekzadeh ◽  
Mohammadamin Atashi ◽  
Konstantinos N. Plataniotis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document